I am working on my thesis about the Environmental Kuznets Curve for Latin America and Southeast Asia, with a pannel data with fixed and random effects. I am using logarithmics and robust standard errors. I would to assess the difference in the effects between the two regions.
I obtain the results attached in the pictures. I do not understand why the cubic terms lose all their significance when adding the Latin America regional dummy and interacting it with the GDPpc variables. In the first regression (the one without regional variables), the introduction of the cubic term makes all the variables significant, and in the second regression is the opposite. How does this make sense?
Depedendent variable: ln of CO2 per capita
PS: I know I should include controls, but in this first analysis I just want to analyse the effect of GDPpc and the regional different effect

These are the codes I used for each table:
I obtain the results attached in the pictures. I do not understand why the cubic terms lose all their significance when adding the Latin America regional dummy and interacting it with the GDPpc variables. In the first regression (the one without regional variables), the introduction of the cubic term makes all the variables significant, and in the second regression is the opposite. How does this make sense?
Depedendent variable: ln of CO2 per capita
PS: I know I should include controls, but in this first analysis I just want to analyse the effect of GDPpc and the regional different effect
These are the codes I used for each table:
Code:
est clear eststo: xtreg ln_co2pc ln_gdppc, fe robust est store fe_model eststo: xtreg ln_co2pc ln_gdppc, re robust est store re_model eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2, fe robust eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2, re robust est store re_model1 eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 ln_gdppc3, fe robust est store fe_model2 eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 ln_gdppc3, re robust est store re_model2 esttab using "a", replace /// b(3) se(3) nomtitle label star(* 0.10 ** 0.05 *** 0.01) /// booktabs /// title("Basic regression table, 1960-2018 \label{reg1}")
Code:
est clear eststo: xtreg ln_co2pc ln_gdppc LAgdppc, fe robust est store fe_model eststo: xtreg ln_co2pc ln_gdppc Latin_America LAgdppc, re robust est store re_model eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 LAgdppc LAgdppc2, fe robust est store fe_model1 eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 Latin_America LAgdppc LAgdppc2, re robust est store re_model1 eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 ln_gdppc3 LAgdppc LAgdppc2 LAgdppc3, fe robust est store fe_model2 eststo: xtreg ln_co2pc ln_gdppc ln_gdppc2 ln_gdppc3 Latin_America LAgdppc LAgdppc2 LAgdppc3, re robust est store re_model2 esttab using "prueba.tex", replace /// b(3) se(3) nomtitle label star(* 0.10 ** 0.05 *** 0.01) /// booktabs /// title("Basic regression table, regional effects for 1960-2018 \label{reg1}") ///
Comment