Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Regression Discontinuity Results Issue

    Hello, I am attempting to use a fuzzy regression discontinuity design. In the study, I am trying to assess the impact of an unconditional cash transfer program for women on their uptake of reproductive health services. The following are the main variables in this study:

    pmt= proxy means test,a poverty score card used to deem eligibility for the transfer (HHs having a score of 16.17 or below are eligible)
    center= the pmt score centered by subtracting the values from the cutoff
    bisp= treatment status variable, 1 if the HH is receiving the cash transfer
    d= binary variable, 1 if the place of delivery was in a health facility

    The rdplot command yields the following graph, which does show a slight jump
    Code:
    rdplot p center, binselect(espr) graph_options(legend(pos(6) row(1)))
    Click image for larger version

Name:	image_30593.png
Views:	1
Size:	38.8 KB
ID:	1707792

    However, when a non-parametric analysis is conducted, the p-value is insignificant
    Code:
    rdrobust d center, fuzzy(bisp)
    Mass points detected in the running variable.

    Code:
    Fuzzy RD estimates using local polynomial regression.
    
    Cutoff c = 0 | Left of c Right of c Number of obs = 10400
    -------------------+---------------------- BW type = mserd
    Number of obs | 2113 8287 Kernel = Triangular
    Eff. Number of obs | 1092 1316 VCE method = NN
    Order est. (p) | 1 1
    Order bias (q) | 2 2
    BW est. (h) | 5.363 5.363
    BW bias (b) | 8.088 8.088
    rho (h/b) | 0.663 0.663
    Unique obs | 613 3400
    
    First-stage estimates. Outcome: bisp. Running variable: center.
    --------------------------------------------------------------------------------
    Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------------+------------------------------------------------------------
    Conventional | -.01054 .03145 -0.3352 0.737 -.072194 .051105
    Robust | - - -0.2413 0.809 -.082984 .064788
    --------------------------------------------------------------------------------
    
    Treatment effect estimates. Outcome: d. Running variable: center. Treatment Status: bisp.
    --------------------------------------------------------------------------------
    Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------------+------------------------------------------------------------
    Conventional | -3.0134 10.157 -0.2967 0.767 -22.9214 16.8946
    Robust | - - -0.3002 0.764 -27.5515 20.2332
    --------------------------------------------------------------------------------
    Estimates adjusted for mass points in the running variable.

    And when I conduct a parametric analysis (ivreg2), to my surprise the p-value is significant. Can someone please explain, how this is possible?
    .
    Code:
    ivreg2 d center (bisp=eligible)
    Code:
    IV (2SLS) estimation
    --------------------
    
    Estimates efficient for homoskedasticity only
    Statistics consistent for homoskedasticity only
    
    Number of obs = 10400
    F( 2, 10397) = 376.88
    Prob > F = 0.0000
    Total (centered) SS = 2333.119615 Centered R2 = -0.0803
    Total (uncentered) SS = 6866 Uncentered R2 = 0.6329
    Residual SS = 2520.486281 Root MSE = .4923
    
    ------------------------------------------------------------------------------
    d | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    bisp | -.6058425 .1740404 -3.48 0.000 -.9469553 -.2647297
    center | .0055215 .0008215 6.72 0.000 .0039113 .0071316
    _cons | .6425867 .0288817 22.25 0.000 .5859797 .6991937
    ------------------------------------------------------------------------------

  • #2
    Hi Adeen, did you find any answer?

    Comment

    Working...
    X