Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Displaying number of observations in a bar chart

    Hello,

    I am trying to display the number of observations in a bar chart for different categories and and total observations that are present for the specific category as well.

    Code:
     
     * Example generated by -dataex-. For more info, type help dataex clear input byte(sex area) 1 2 1 4 1 3 1 1 1 2 1 4 1 1 1 5 1 2 0 4 end label values sex sex label def sex 0 "Female", modify label def sex 1 "Male", modify
    How can I create bar graphs that display the total observations of area '5' in the ytitles or axis, and the total observations of "Females" in the area '5', as a bar label.

    Thank you.

  • #2
    Code:
    clear
    frames reset
    set scheme s1mono
    
    input byte(sex area)
    1 2
    1 4
    1 3
    1 1
    1 2
    1 4
    1 1
    1 5
    1 2
    0 4
    end
    label values sex sex
    label def sex 0 "Female", modify
    label def sex 1 "Male", modify
    
    // make a copy of the dataset
    frame copy default tograph
    
    // move to that copy
    frame change tograph
    
    // count the number of females in each area
    bys area : egen nfemale = total(sex==0)
    
    // make a dataset with the number of obs and females in each area
    contract area nfemale, freq(total)
    
    // count the number of males in each area
    gen nmale = total - nfemale
    
    // position of the numbers in the graph
    gen xfemale = nfemale / 2 if nfemale != 0
    gen xmale = nfemale + nmale/2 if nmale != 0
    
    // I like these graphs to be sorted
    // requires -labmask- by Nick Cox, type in Stata -search labmask- to find it
    sort total area
    gen Area = _n
    labmask Area, values(area)
    
    //make the graph
    twoway bar total Area, horizontal xlab(0/3) xscale(range(0 3.2)) barw(0.9) ///
           legend(order(1 "male" 2 "female")) ylab(,angle(0) val) || ///
           bar nfemale Area, horizontal barw(0.9) || ///
           scatter Area xfemale, msymbol(i) mlab(nfemale) mlabpos(0) || ///
           scatter Area xmale, msymbol(i) mlab(nmale) mlabpos(0)
    
    // go back to original data       
    frame change default
    Click image for larger version

Name:	Graph.png
Views:	1
Size:	38.1 KB
ID:	1702671
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment


    • #3
      Originally posted by Maarten Buis View Post
      Code:
      clear
      frames reset
      set scheme s1mono
      
      input byte(sex area)
      1 2
      1 4
      1 3
      1 1
      1 2
      1 4
      1 1
      1 5
      1 2
      0 4
      end
      label values sex sex
      label def sex 0 "Female", modify
      label def sex 1 "Male", modify
      
      // make a copy of the dataset
      frame copy default tograph
      
      // move to that copy
      frame change tograph
      
      // count the number of females in each area
      bys area : egen nfemale = total(sex==0)
      
      // make a dataset with the number of obs and females in each area
      contract area nfemale, freq(total)
      
      // count the number of males in each area
      gen nmale = total - nfemale
      
      // position of the numbers in the graph
      gen xfemale = nfemale / 2 if nfemale != 0
      gen xmale = nfemale + nmale/2 if nmale != 0
      
      // I like these graphs to be sorted
      // requires -labmask- by Nick Cox, type in Stata -search labmask- to find it
      sort total area
      gen Area = _n
      labmask Area, values(area)
      
      //make the graph
      twoway bar total Area, horizontal xlab(0/3) xscale(range(0 3.2)) barw(0.9) ///
      legend(order(1 "male" 2 "female")) ylab(,angle(0) val) || ///
      bar nfemale Area, horizontal barw(0.9) || ///
      scatter Area xfemale, msymbol(i) mlab(nfemale) mlabpos(0) || ///
      scatter Area xmale, msymbol(i) mlab(nmale) mlabpos(0)
      
      // go back to original data
      frame change default
      [ATTACH=CONFIG]n1702671[/ATTACH]
      Hello Maarten,

      Thank you for the response. It appears to be working but I would like to display the percentages on y-axis, and number of observations(N) in the bar labels. Is there a way to do that?

      Comment


      • #4
        Not quite what you're asking, but may be of interest to anyone interested in the thread title. Naturally the colours can be tuned to choice.


        See also

        Code:
        SJ-22-2 gr0066_3  . . . . . . . . . . . . . . . .  Software update for tabplot
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q2/22   SJ 22(2):467
                bug fixed; help file updated to include further references
        
        SJ-20-3 gr0066_2  . . . . . . . . . . . . . . . .  Software update for tabplot
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q3/20   SJ 20(3):757--758
                added new options frame() and frameopts() allowing framing
                of bars and so-called thermometer plots or charts
        
        SJ-17-3 gr0066_1  . . . . . . . . . . . . . . . .  Software update for tabplot
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q3/17   SJ 17(3):779
                added options for reversing axis scales; improved handling of
                axis labels containing quotation marks
        
        SJ-16-2 gr0066  . . . . . .  Speaking Stata: Multiple bar charts in table form
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q2/16   SJ 16(2):491--510
                provides multiple bar charts in table form representing
                contingency tables for one, two, or three categorical variables


        Code:
        clear
        set scheme s1color
        
        input byte(sex area)
        1 2
        1 4
        1 3
        1 1
        1 2
        1 4
        1 1
        1 5
        1 2
        0 4
        end
        label values sex sex
        label def sex 0 "Female", modify
        label def sex 1 "Male", modify
        
        bysort area sex : gen freq = _N
        by area : gen total = _N
        gen pc = 100 * freq / total
        gen toshow = strofreal(freq) + " (" + strofreal(pc, "%2.1f") + "%)"
        
        * tabplot should be installed from Stata Journal website
        tabplot sex area, showval(toshow) separate(sex) bar1(color(blue)) bar2(color(orange))
        Click image for larger version

Name:	areasex4.png
Views:	1
Size:	15.4 KB
ID:	1702683

        Last edited by Nick Cox; 21 Feb 2023, 03:22.

        Comment


        • #5
          Code:
          clear
          frames reset
          set scheme s1mono
          
          input byte(sex area)
          1 2
          1 4
          1 3
          1 1
          1 2
          1 4
          1 1
          1 5
          1 2
          0 4
          end
          label values sex sex
          label def sex 0 "Female", modify
          label def sex 1 "Male", modify
          
          // make a copy of the dataset
          frame copy default tograph
          
          // move to that copy
          frame change tograph
          
          // count the number of females in each area
          bys area : egen nfemale = total(sex==0)
          
          // make a dataset with the number of obs and females in each area
          contract area nfemale, freq(total)
          
          // count the number of males in each area
          gen nmale = total - nfemale
          
          // position of the numbers in the graph
          gen xfemale = nfemale / 2 if nfemale != 0
          gen xmale = nfemale + nmale/2 if nmale != 0
          
          // <-- begin new
          // compute perentages
          gen percfemale = (nfemale/total)*100
          gen percmale = (nmale/total)*100
          
          // format the percentages so they look nice in the graph
          gen labfemale = strofreal(percfemale, "%5.2g") + "%"
          gen labmale = strofreal(percmale, "%5.2g") + "%"
          // <-- end new
          
          // I like these graphs to be sorted
          // requires -labmask- by Nick Cox, type in Stata -search labmask- to find it
          sort total area
          gen Area = _n
          labmask Area, values(area)
          
          //make the graph
          twoway bar total Area, horizontal xlab(0/3) xscale(range(0 3.2)) barw(0.9) ///
                 legend(order(1 "male" 2 "female")) ylab(,angle(0) val) || ///
                 bar nfemale Area, horizontal barw(0.9) || ///
                 scatter Area xfemale, msymbol(i) mlab(labfemale) mlabpos(0) || /// <-- changed
                 scatter Area xmale, msymbol(i) mlab(labmale) mlabpos(0)  // <-- changed
          
          // go back to original data       
          frame change default
          Click image for larger version

Name:	Graph.png
Views:	1
Size:	43.1 KB
ID:	1702688
          ---------------------------------
          Maarten L. Buis
          University of Konstanz
          Department of history and sociology
          box 40
          78457 Konstanz
          Germany
          http://www.maartenbuis.nl
          ---------------------------------

          Comment


          • #6
            Following up on this thread title, I need to produce a bar graph of two variables, political representation for women and men, by geographical area and show the total number of observation by area and I have an unbalanced sample of countries
            This my data:

            Geo_regions Maleyounger40percentage Femaleyounger40percentage
            SSA 0 0
            SSA 12.31 12.31
            SSA 11.11 8.33
            SSA 20.31 1.56
            SSA 12.82 15.38
            SSA 2.78 1.39
            SSA 8.03 .8
            SSA 2.75 2.75
            SSA 0 7.32
            SSA 5.52 5.52
            SSA 15.07 1.37
            SSA 5.52 5.52
            SSA 0 0
            SSA 2.78 1.67
            SSA 3.85 0
            SSA 7.76 .86
            SSA 27.78 5.56
            SSA 10.91 2.18
            SSA 0 0
            SSA 7.8 3.55
            SSA 4.82 0
            SSA 11.43 10
            SSA 14.29 17.14
            SSA 6.67 3.33
            SSA 10.91 5.45
            SSA 0 0
            SSA 14.71 5.88
            SSA 10.93 1.09
            SSA 5.94 6.93
            SSA 4.55 1.52
            SSA 7.69 1.1
            SSA 11.6 10.4
            SSA 11.11 0
            SSA 0 0
            SSA 1.74 2.61
            SSA 2.78 1.67
            SSA 5 17.5
            SSA 14.55 7.27
            SSA 13.27 2.04
            SSA 11.11 2.78
            SSA 9.09 9.09
            SSA 0 0
            SSA 0 0
            SSA 2.76 .39
            SSA 9.72 6.94
            SSA 7.69 2.88
            SSA 9.6 7.6
            SSA 6.35 1.59
            SSA 4.59 6.42
            SSA 8.6 1.2
            SSA 2.41 0
            SSA 11.21 0
            SSA 7.69 2.56
            SSA 0 0
            SSA 14.86 1.35
            SSA 10.18 2.18
            SSA 11.63 10.25
            SSA 8.33 2.78
            SSA 6.88 .29
            SSA 9.46 3.44
            SSA 14.37 2.99
            SSA 5.26 5.57
            SSA 10.39 0
            SSA 21.02 30.15
            SSA 6.19 2.65
            SSA 5.26 0
            SSA 15.09 10.38
            SSA 8 0
            SSA 9.68 15.05
            SSA 14.66 12.93
            SSA 5.42 1.2
            SSA 11.59 1.22
            SSA 11.25 13.75
            SSA 8.84 0
            SSA 11.76 8.82
            SSA 14.56 9.77
            SSA 13.85 15.38
            SSA 25 2.42
            SSA 25 2.42
            SSA 14.05 7.44
            SSA 18.18 5.45
            SSA 11.11 9.26
            SSA 11.11 9.26
            SSA 11.32 3.77
            SSA 11.26 .66
            SSA 9.5 6
            SSA 22.1 5.52
            SSA 2.38 2.38
            SSA 19.72 15.65
            SSA 20 5.71
            SSA 12.65 11.47
            SSA 15.64 3.32
            SSA 29.58 7.04
            SSA 37.93 3.45
            SSA 31.03 5.17
            NA&WA 2.5 2.5
            NA&WA 16.33 0
            NA&WA 26.74 0
            NA&WA 20 7.5
            NA&WA 0 0
            NA&WA 0 0
            NA&WA 6.96 10.43
            NA&WA 31.76 0
            NA&WA 11.18 0
            NA&WA 5.4 3.35
            NA&WA 18 0
            NA&WA 14.29 7.56
            NA&WA 12.71 5.93
            NA&WA 0 0
            NA&WA 8.2 5.05
            NA&WA 12.31 0
            NA&WA 0 0
            NA&WA 0 0
            NA&WA 2.5 5
            NA&WA 9.17 3.33
            NA&WA 5.71 0
            NA&WA 6.92 4.62
            NA&WA 11.67 5.83
            NA&WA 5 20
            NA&WA 2.65 .66
            NA&WA 0 0
            NA&WA 3.91 0
            NA&WA 5.47 .78
            NA&WA 4.17 0
            NA&WA 10 3.53
            NA&WA 1.79 0
            NA&WA 6.78 3.39
            NA&WA 17.95 5.13
            NA&WA 0 0
            NA&WA 4.29 0
            NA&WA 14 0
            NA&WA 7.83 14.75
            NA&WA 0 2.5
            NA&WA 2.52 1.68
            NA&WA 8.7 11.3
            NA&WA 10.22 6.52
            NA&WA 6.5 4.17
            NA&WA 12.67 8.28
            NA&WA 25.33 5.33
            NA&WA 10.33 4.5
            NA&WA 9.08 2.69
            NA&WA 6.33 6.58
            NA&WA 18.32 3.05
            NA&WA 7.34 10.13
            NA&WA 5.65 1.21
            NA&WA 8.33 3.33
            NA&WA 18.1 5.71
            NA&WA 6.12 3.4
            NA&WA 11.89 2.84
            NA&WA 7.81 1.56
            NA&WA 7.14 5.36
            NA&WA 19.64 3.57
            NA&WA 20 5
            NA&WA 10 10
            NA&WA 18 6.67
            NA&WA 27.27 3.44
            NA&WA 17.05 9.68
            NA&WA 17.05 9.68
            NA&WA 28.04 24.3
            NA&WA 40.91 16.67
            C&SA 3.92 4.9
            C&SA 14.71 1.47
            C&SA 1.89 0
            C&SA 6.73 2.88
            C&SA 7.02 0
            C&SA .73 4.36
            C&SA 6 0
            C&SA 2.14 .85
            C&SA 5.05 3.03
            C&SA 12.9 6.45
            C&SA 0 .49
            C&SA 0 .49
            C&SA 23.33 4.44
            C&SA 11.97 2.46
            C&SA 0 0
            C&SA 0 0
            C&SA 0 0
            C&SA 1.72 0
            C&SA 19.15 2.13
            C&SA 3.17 3.17
            C&SA 0 .49
            C&SA 1.67 .84
            C&SA 20 4
            C&SA 0 0
            C&SA 4.29 1.43
            C&SA 4.29 1.43
            C&SA 15.92 9.8
            C&SA 7.69 3.85
            C&SA 7.34 3.37
            C&SA 2.91 8.73
            C&SA 6.94 .46
            C&SA 3.77 3.77
            C&SA 5.26 0
            C&SA 8.87 3.7
            C&SA 21.33 2.67
            C&SA 25.98 2.36
            C&SA 26.4 8.8
            C&SA 8.49 9.43
            C&SA 11.96 .48
            C&SA 11.61 0
            C&SA 11.4 2.92
            C&SA 26.61 10.48
            C&SA 22.45 3.06
            C&SA 22.22 4.27
            C&SA 22.22 4.27
            C&SA 24.14 2.3
            C&SA 30.56 5.56
            C&SA 45.83 8.33
            C&SA 54.55 0
            C&SA 41.13 13.71
            E&SEA 1.54 1.54
            E&SEA 0 0
            E&SEA 8.42 7.37
            E&SEA 2.4 0
            E&SEA 7.44 2.07
            E&SEA 1.68 2.02
            E&SEA 4 0
            E&SEA 0 0
            E&SEA 2.05 1.64
            E&SEA 6.88 1.51
            E&SEA 4.17 0
            E&SEA 0 0
            E&SEA 8.56 2.25
            E&SEA 1.83 .61
            E&SEA 2.94 2.94
            E&SEA 9.84 1.64
            E&SEA 13.04 8.7
            E&SEA 11.84 2.63
            E&SEA 4.17 0
            E&SEA 3.72 2.48
            E&SEA 19.2 2.23
            E&SEA 3.27 2.45
            E&SEA 1 1.33
            E&SEA 1.85 0
            E&SEA 0 0
            E&SEA 7.69 10.77
            E&SEA 1.75 0
            E&SEA 4.84 1.61
            E&SEA 0 0
            E&SEA 1.8 6.8
            E&SEA 3.41 7.01
            E&SEA 5.38 .65
            E&SEA 11.52 1.84
            E&SEA 2.25 3.36
            E&SEA 4.23 8.06
            E&SEA 11.52 0
            E&SEA 9.5 .71
            E&SEA 10.83 1.88
            E&SEA 6.76 3.6
            E&SEA 10.36 2.25
            E&SEA 11.3 4.45
            E&SEA 11 5.6
            E&SEA 12.68 5.18
            E&SEA 9.74 5.22
            E&SEA 15.79 0
            E&SEA 13.5 6.75
            E&SEA 20.8 8.4
            Oceania 9.93 3.97
            Oceania 0 0
            Oceania 31.58 0
            Oceania 7.35 2.94
            Oceania 8.78 5.41
            Oceania 6.25 0
            Oceania 4.88 0
            Oceania 13.33 0
            Oceania 14 0
            Oceania 11.76 0
            Oceania 3.7 0
            Oceania 0 0
            Oceania 7.95 0
            Oceania 36.84 0
            Oceania 8.33 0
            Oceania 8 2
            Oceania 8.72 4.7
            Oceania 9.84 8.2
            Oceania 13.33 8.33
            Oceania 12.5 15
            Oceania 5.83 4.17
            Oceania 7.89 6.58
            Oceania 8.7 5.8
            Oceania 12.17 5.22
            Oceania 12.73 0
            Oceania 10.14 4.05
            Oceania 9.59 2.74
            LAC 0 0
            LAC 9.09 0
            LAC 6.17 0
            LAC 14.85 1.98
            LAC 8.46 3.85
            LAC 4.76 4.76
            LAC 2 6
            LAC 19.4 11.94
            LAC 14.53 0
            LAC 4.9 9.8
            LAC 2.47 0
            LAC 20.22 2.25
            LAC 5.43 8.7
            LAC 4.44 0
            LAC 2.47 0
            LAC 1.39 5.56
            LAC 11.32 5.66
            LAC 4.65 2.33
            LAC 0 0
            LAC 2.63 2.63
            LAC 1.39 1.39
            LAC 0 0
            LAC 10.2 6.12
            LAC 2.22 0
            LAC 0 5.49
            LAC 23.08 15.38
            LAC 5.56 5.56
            LAC 7.53 1.08
            LAC 0 0
            LAC 6.67 20
            LAC 2.82 7.04
            LAC 17.65 5.88
            LAC 14.04 5.26
            LAC 2.38 4.76
            LAC 6.25 18.75
            LAC 2.44 4.88
            LAC 8.33 5.95
            LAC 0 0
            LAC 1.39 5.56
            LAC 7.07 0
            LAC 3.23 16.13
            LAC 5.56 5.56
            LAC 0 3.3
            LAC 3.33 0
            LAC 0 0
            LAC 6.23 6.23
            LAC 7.48 9.84
            LAC 6.8 8.4
            LAC 12.5 11.72
            LAC 9.34 9.34
            LAC 19 8
            LAC 26.26 5.05
            LAC 17.17 4.04
            LAC 15.48 9.52
            LAC 26.25 2.5
            LAC 18.46 7.69
            LAC 11.63 14.73
            LAC 10.33 .58
            LAC 12.6 16
            LAC 12.6 16
            LAC 7.75 3.79
            LAC 12.28 21.05
            LAC 18.06 13.55
            LAC 9.8 13.73
            LAC 13.87 19.71
            LAC 16.57 6.24
            LAC 11.9 11.9
            LAC 12.8 1.22
            LAC 17.5 3.75
            LAC 18.44 17.23
            LAC 8.18 8.35
            LAC 3.23 3.23
            LAC 20 6.67
            LAC 3.33 10
            LAC 17.57 .68
            LAC 16.93 1.95
            LAC 15.79 12.28
            LAC 12.77 22.77
            LAC 16.06 18.25
            LAC 17.52 20.44
            LAC 21.25 7.5
            LAC 18.06 8.39
            LAC 30.34 11.24
            LAC 22.03 4.87
            LAC 22.29 7.23
            LAC 18.75 10.63
            LAC 18.75 10.63
            LAC 26.67 6.06
            LAC 11.76 17.65
            LAC 25.49 11.76
            E&NA 3 0
            E&NA 1.45 .29
            E&NA 6.52 6.52
            E&NA 4 4
            E&NA 1.23 1.23
            E&NA 13.33 0
            E&NA 6.52 2.17
            E&NA 2.5 0
            E&NA 1.45 0
            E&NA 14.57 7.95
            E&NA 1.56 1.25
            E&NA 11.11 9.52
            E&NA 4 0
            E&NA 1 0
            E&NA 2.37 1.18
            E&NA 6.67 13.33
            E&NA 4 8
            E&NA 5 0
            E&NA 0 0
            E&NA 2 0
            E&NA 5.52 1.15
            E&NA 0 0
            E&NA 7.32 9.76
            E&NA 10.17 8.47
            E&NA 0 0
            E&NA 1 0
            E&NA 14.29 0
            E&NA 3.57 1.79
            E&NA 0 .25
            E&NA 4.59 .92
            E&NA 1.45 .29
            E&NA 6.52 4.35
            E&NA 8.06 3.46
            E&NA 2.17 2.17
            E&NA .38 .25
            E&NA 13.33 0
            E&NA 12.5 1.47
            E&NA 0 0
            E&NA 2.9 2.9
            E&NA 4 0
            E&NA 10.17 8.47
            E&NA 0 0
            E&NA 4 5.33
            E&NA 0 0
            E&NA 2.06 1.03
            E&NA 0 0
            E&NA 2 1
            E&NA 10.91 1.21
            E&NA 4.17 16.67
            E&NA 20.83 8.33
            E&NA .58 .29
            E&NA 8.82 2.21
            E&NA 7.85 3.69
            E&NA 6.94 3.47
            E&NA 4.87 1.86
            E&NA 8.25 8
            E&NA 2.59 .86
            E&NA 7.67 4.67
            E&NA 8 3.33
            E&NA 7.67 4.67
            E&NA 3.79 6.44
            E&NA 7.76 3.81
            E&NA 12.83 4.57
            E&NA 8.5 10.5
            E&NA 8 7
            E&NA 19.55 4.95
            E&NA 7.16 6.88
            E&NA 16.46 1.83
            E&NA 8.61 5.96
            E&NA 14 2.67
            E&NA 14 2.67
            E&NA 10.64 1.42
            E&NA 9.35 7.19
            E&NA 11.19 11.19
            E&NA 12.8 11.6
            E&NA 12.3 5.74
            E&NA 15.83 1.67
            E&NA 15.83 1.67
            E&NA 17.5 10.83
            E&NA 11.56 2
            E&NA 8.18 5.45
            E&NA 19.8 3.96
            E&NA 9.67 2.33
            E&NA 12 3
            E&NA 18 4
            E&NA 8.5 10.5
            E&NA 13 4
            E&NA 12 7
            E&NA 11.5 7.5
            E&NA 15.08 3.02
            E&NA 24.87 4.57
            E&NA 8 7.43
            E&NA 12.5 2.5
            E&NA 15.9 7.11
            E&NA 16.96 6.09
            E&NA 14 14.67
            E&NA 5.33 6.67
            E&NA 20 13.33
            E&NA 12 16
            E&NA 4 1.33
            E&NA 8.08 6.06
            E&NA 17.73 11.35
            E&NA 13.48 5.67
            E&NA 14.5 11
            E&NA 6.77 8.65
            E&NA 11.38 3.35
            E&NA 9.52 11.11
            E&NA 6.35 14.29
            E&NA 11.04 5.84
            E&NA 11.67 8.33
            E&NA 6.67 5
            E&NA 13.33 11.67
            E&NA 15.64 18.44
            E&NA 12.57 10.29
            E&NA 11.41 6.18
            E&NA 13.69 8
            E&NA 13.13 5.63
            E&NA 6.82 4.55
            E&NA 6.18 3.86
            E&NA 13.91 5.22
            E&NA 11.18 5.92
            E&NA 15.89 5.96
            E&NA 12.58 3.31
            E&NA 18.8 12.4
            E&NA 15 14.5
            E&NA 12.63 7.4
            E&NA 14.5 14.5
            E&NA 14.5 5.5
            E&NA 14.07 4.52
            E&NA 12.44 6.54
            E&NA 6.25 8.33
            E&NA 11.48 6.56
            E&NA 12.22 5.56
            E&NA 14.29 4.76
            E&NA 14.29 4.76
            E&NA 10 5
            E&NA 12.07 7.76
            E&NA 15.22 10
            E&NA 14.67 9.33
            E&NA 17.33 14
            E&NA 12.4 16.4
            E&NA 12.4 16.4
            E&NA 14.29 5.71
            E&NA 22.86 15.71
            E&NA 22.92 5.83
            E&NA 25.42 7.08
            E&NA 22.08 7.5
            E&NA 12.87 4.95
            E&NA 13.86 5.94
            E&NA 16.09 10.87
            E&NA 16.52 7.83
            E&NA 11.48 8.2
            E&NA 13.11 12.57
            E&NA 35 1.67
            E&NA 20 13.33
            E&NA 16.67 5.56
            E&NA 26.75 7.9
            E&NA 15.64 18.99
            E&NA 24.69 6.28
            E&NA 22.35 18.99
            E&NA 16.96 5.43
            E&NA 21.43 14.29
            E&NA 28.57 10.71
            E&NA 10.71 14.29
            E&NA 7.14 3.57
            E&NA 12.31 10.92
            E&NA 14.75 13.11
            E&NA 13.97 16.76
            E&NA 21 6
            E&NA 22 7
            E&NA 26 13.33
            E&NA 24.32 4.73
            E&NA 22.76 9.76
            E&NA 24.44 18.25
            E&NA 22.39 4.48
            E&NA 25.84 9.42
            E&NA 16.05 12.89
            E&NA 18.62 15.76
            E&NA 29.63 7.41
            E&NA 17.28 4.94
            E&NA 23.33 18.33
            E&NA 26 8
            E&NA 16 3
            E&NA 18.72 8.67
            E&NA 33.1 13.24
            E&NA 16.17 12.77
            E&NA 15.56 10
            E&NA 25.74 11.88
            E&NA 17 9
            E&NA 17.5 18.5
            E&NA 20.8 19.6
            E&NA 25 11.67
            E&NA 26 8.67
            E&NA 20.63 13.47
            E&NA 18.93 8.28
            E&NA 20.71 13.61
            E&NA 20.71 13.61
            E&NA 20 6.67

            here the graph I produce, but without total numbers rof obs per Geo_regions

            set scheme s1color
            gr bar Maleyounger40percentage Femaleyounger40percentage ,over(Geo_regions, sort(2) label(angle(0) labsize(tiny))) ///
            title ("Member of Parliament younger than 30 years old") ///
            subtitle (" 2008-2023 ") ///
            note("", size(vsmall)) ///
            legend(order (1 "Men" 2 "Women" ) rows(1) size(small) ) ///
            ylabel(0 "0 %" 10 "10%" 20 "20%" 30 "30%" 40 "40%" 50 "50%" , angle(0)labsize(small) ) ///
            bar(1, fcolor(emidblue) lcolor(emidblue) ) bar(2, fcolor(red) lcolor(red)) ///
            ytitle ("Percentage")

            Thank you for your help

            Anna

            Comment


            • #7
              You've got repeated examples -- explicit in #2 #3 #5 and implicit in #4 -- that graph bar is a dead end here, or at least not very flexible for what you want. For flexibility, use twoway bar.

              Comment


              • #8
                This was posted at a time when I was much busier and could see that the example needed much more work before the question could be answered fully.

                No one else has yet stepped into the breach.

                On reading it more carefully I have to suggest that a bar chart (of means) is too reductive here, so I propose quantile plots instead.

                In terms of details, I note that the variable names imply MPs (Members of Parliament, not Military Police) under 40, not 30 as the code in #6 implies. Also, there seems little point in extending the vertical axis in the first graph to 50% when means are much lower.

                Here first is your data example rewritten with dataex.

                I used myaxis from the Stata Journal to get the sorting you would get with graph bar.

                I used stripplot from SSC to get the quantile plots with added means.

                The trick for showing number of observations in the panel (facet) subtitles was written up in https://journals.sagepub.com/doi/pdf...6867X211063413

                Code:
                * Example generated by -dataex-. For more info, type help dataex
                clear
                input str7 Geo_regions double(Maleyounger40percentage Femaleyounger40percentage)
                "SSA"         0     0
                "SSA"     12.31 12.31
                "SSA"     11.11  8.33
                "SSA"     20.31  1.56
                "SSA"     12.82 15.38
                "SSA"      2.78  1.39
                "SSA"      8.03    .8
                "SSA"      2.75  2.75
                "SSA"         0  7.32
                "SSA"      5.52  5.52
                "SSA"     15.07  1.37
                "SSA"      5.52  5.52
                "SSA"         0     0
                "SSA"      2.78  1.67
                "SSA"      3.85     0
                "SSA"      7.76   .86
                "SSA"     27.78  5.56
                "SSA"     10.91  2.18
                "SSA"         0     0
                "SSA"       7.8  3.55
                "SSA"      4.82     0
                "SSA"     11.43    10
                "SSA"     14.29 17.14
                "SSA"      6.67  3.33
                "SSA"     10.91  5.45
                "SSA"         0     0
                "SSA"     14.71  5.88
                "SSA"     10.93  1.09
                "SSA"      5.94  6.93
                "SSA"      4.55  1.52
                "SSA"      7.69   1.1
                "SSA"      11.6  10.4
                "SSA"     11.11     0
                "SSA"         0     0
                "SSA"      1.74  2.61
                "SSA"      2.78  1.67
                "SSA"         5  17.5
                "SSA"     14.55  7.27
                "SSA"     13.27  2.04
                "SSA"     11.11  2.78
                "SSA"      9.09  9.09
                "SSA"         0     0
                "SSA"         0     0
                "SSA"      2.76   .39
                "SSA"      9.72  6.94
                "SSA"      7.69  2.88
                "SSA"       9.6   7.6
                "SSA"      6.35  1.59
                "SSA"      4.59  6.42
                "SSA"       8.6   1.2
                "SSA"      2.41     0
                "SSA"     11.21     0
                "SSA"      7.69  2.56
                "SSA"         0     0
                "SSA"     14.86  1.35
                "SSA"     10.18  2.18
                "SSA"     11.63 10.25
                "SSA"      8.33  2.78
                "SSA"      6.88   .29
                "SSA"      9.46  3.44
                "SSA"     14.37  2.99
                "SSA"      5.26  5.57
                "SSA"     10.39     0
                "SSA"     21.02 30.15
                "SSA"      6.19  2.65
                "SSA"      5.26     0
                "SSA"     15.09 10.38
                "SSA"         8     0
                "SSA"      9.68 15.05
                "SSA"     14.66 12.93
                "SSA"      5.42   1.2
                "SSA"     11.59  1.22
                "SSA"     11.25 13.75
                "SSA"      8.84     0
                "SSA"     11.76  8.82
                "SSA"     14.56  9.77
                "SSA"     13.85 15.38
                "SSA"        25  2.42
                "SSA"        25  2.42
                "SSA"     14.05  7.44
                "SSA"     18.18  5.45
                "SSA"     11.11  9.26
                "SSA"     11.11  9.26
                "SSA"     11.32  3.77
                "SSA"     11.26   .66
                "SSA"       9.5     6
                "SSA"      22.1  5.52
                "SSA"      2.38  2.38
                "SSA"     19.72 15.65
                "SSA"        20  5.71
                "SSA"     12.65 11.47
                "SSA"     15.64  3.32
                "SSA"     29.58  7.04
                "SSA"     37.93  3.45
                "SSA"     31.03  5.17
                "NA&WA"     2.5   2.5
                "NA&WA"   16.33     0
                "NA&WA"   26.74     0
                "NA&WA"      20   7.5
                "NA&WA"       0     0
                "NA&WA"       0     0
                "NA&WA"    6.96 10.43
                "NA&WA"   31.76     0
                "NA&WA"   11.18     0
                "NA&WA"     5.4  3.35
                "NA&WA"      18     0
                "NA&WA"   14.29  7.56
                "NA&WA"   12.71  5.93
                "NA&WA"       0     0
                "NA&WA"     8.2  5.05
                "NA&WA"   12.31     0
                "NA&WA"       0     0
                "NA&WA"       0     0
                "NA&WA"     2.5     5
                "NA&WA"    9.17  3.33
                "NA&WA"    5.71     0
                "NA&WA"    6.92  4.62
                "NA&WA"   11.67  5.83
                "NA&WA"       5    20
                "NA&WA"    2.65   .66
                "NA&WA"       0     0
                "NA&WA"    3.91     0
                "NA&WA"    5.47   .78
                "NA&WA"    4.17     0
                "NA&WA"      10  3.53
                "NA&WA"    1.79     0
                "NA&WA"    6.78  3.39
                "NA&WA"   17.95  5.13
                "NA&WA"       0     0
                "NA&WA"    4.29     0
                "NA&WA"      14     0
                "NA&WA"    7.83 14.75
                "NA&WA"       0   2.5
                "NA&WA"    2.52  1.68
                "NA&WA"     8.7  11.3
                "NA&WA"   10.22  6.52
                "NA&WA"     6.5  4.17
                "NA&WA"   12.67  8.28
                "NA&WA"   25.33  5.33
                "NA&WA"   10.33   4.5
                "NA&WA"    9.08  2.69
                "NA&WA"    6.33  6.58
                "NA&WA"   18.32  3.05
                "NA&WA"    7.34 10.13
                "NA&WA"    5.65  1.21
                "NA&WA"    8.33  3.33
                "NA&WA"    18.1  5.71
                "NA&WA"    6.12   3.4
                "NA&WA"   11.89  2.84
                "NA&WA"    7.81  1.56
                "NA&WA"    7.14  5.36
                "NA&WA"   19.64  3.57
                "NA&WA"      20     5
                "NA&WA"      10    10
                "NA&WA"      18  6.67
                "NA&WA"   27.27  3.44
                "NA&WA"   17.05  9.68
                "NA&WA"   17.05  9.68
                "NA&WA"   28.04  24.3
                "NA&WA"   40.91 16.67
                "C&SA"     3.92   4.9
                "C&SA"    14.71  1.47
                "C&SA"     1.89     0
                "C&SA"     6.73  2.88
                "C&SA"     7.02     0
                "C&SA"      .73  4.36
                "C&SA"        6     0
                "C&SA"     2.14   .85
                "C&SA"     5.05  3.03
                "C&SA"     12.9  6.45
                "C&SA"        0   .49
                "C&SA"        0   .49
                "C&SA"    23.33  4.44
                "C&SA"    11.97  2.46
                "C&SA"        0     0
                "C&SA"        0     0
                "C&SA"        0     0
                "C&SA"     1.72     0
                "C&SA"    19.15  2.13
                "C&SA"     3.17  3.17
                "C&SA"        0   .49
                "C&SA"     1.67   .84
                "C&SA"       20     4
                "C&SA"        0     0
                "C&SA"     4.29  1.43
                "C&SA"     4.29  1.43
                "C&SA"    15.92   9.8
                "C&SA"     7.69  3.85
                "C&SA"     7.34  3.37
                "C&SA"     2.91  8.73
                "C&SA"     6.94   .46
                "C&SA"     3.77  3.77
                "C&SA"     5.26     0
                "C&SA"     8.87   3.7
                "C&SA"    21.33  2.67
                "C&SA"    25.98  2.36
                "C&SA"     26.4   8.8
                "C&SA"     8.49  9.43
                "C&SA"    11.96   .48
                "C&SA"    11.61     0
                "C&SA"     11.4  2.92
                "C&SA"    26.61 10.48
                "C&SA"    22.45  3.06
                "C&SA"    22.22  4.27
                "C&SA"    22.22  4.27
                "C&SA"    24.14   2.3
                "C&SA"    30.56  5.56
                "C&SA"    45.83  8.33
                "C&SA"    54.55     0
                "C&SA"    41.13 13.71
                "E&SEA"    1.54  1.54
                "E&SEA"       0     0
                "E&SEA"    8.42  7.37
                "E&SEA"     2.4     0
                "E&SEA"    7.44  2.07
                "E&SEA"    1.68  2.02
                "E&SEA"       4     0
                "E&SEA"       0     0
                "E&SEA"    2.05  1.64
                "E&SEA"    6.88  1.51
                "E&SEA"    4.17     0
                "E&SEA"       0     0
                "E&SEA"    8.56  2.25
                "E&SEA"    1.83   .61
                "E&SEA"    2.94  2.94
                "E&SEA"    9.84  1.64
                "E&SEA"   13.04   8.7
                "E&SEA"   11.84  2.63
                "E&SEA"    4.17     0
                "E&SEA"    3.72  2.48
                "E&SEA"    19.2  2.23
                "E&SEA"    3.27  2.45
                "E&SEA"       1  1.33
                "E&SEA"    1.85     0
                "E&SEA"       0     0
                "E&SEA"    7.69 10.77
                "E&SEA"    1.75     0
                "E&SEA"    4.84  1.61
                "E&SEA"       0     0
                "E&SEA"     1.8   6.8
                "E&SEA"    3.41  7.01
                "E&SEA"    5.38   .65
                "E&SEA"   11.52  1.84
                "E&SEA"    2.25  3.36
                "E&SEA"    4.23  8.06
                "E&SEA"   11.52     0
                "E&SEA"     9.5   .71
                "E&SEA"   10.83  1.88
                "E&SEA"    6.76   3.6
                "E&SEA"   10.36  2.25
                "E&SEA"    11.3  4.45
                "E&SEA"      11   5.6
                "E&SEA"   12.68  5.18
                "E&SEA"    9.74  5.22
                "E&SEA"   15.79     0
                "E&SEA"    13.5  6.75
                "E&SEA"    20.8   8.4
                "Oceania"  9.93  3.97
                "Oceania"     0     0
                "Oceania" 31.58     0
                "Oceania"  7.35  2.94
                "Oceania"  8.78  5.41
                "Oceania"  6.25     0
                "Oceania"  4.88     0
                "Oceania" 13.33     0
                "Oceania"    14     0
                "Oceania" 11.76     0
                "Oceania"   3.7     0
                "Oceania"     0     0
                "Oceania"  7.95     0
                "Oceania" 36.84     0
                "Oceania"  8.33     0
                "Oceania"     8     2
                "Oceania"  8.72   4.7
                "Oceania"  9.84   8.2
                "Oceania" 13.33  8.33
                "Oceania"  12.5    15
                "Oceania"  5.83  4.17
                "Oceania"  7.89  6.58
                "Oceania"   8.7   5.8
                "Oceania" 12.17  5.22
                "Oceania" 12.73     0
                "Oceania" 10.14  4.05
                "Oceania"  9.59  2.74
                "LAC"         0     0
                "LAC"      9.09     0
                "LAC"      6.17     0
                "LAC"     14.85  1.98
                "LAC"      8.46  3.85
                "LAC"      4.76  4.76
                "LAC"         2     6
                "LAC"      19.4 11.94
                "LAC"     14.53     0
                "LAC"       4.9   9.8
                "LAC"      2.47     0
                "LAC"     20.22  2.25
                "LAC"      5.43   8.7
                "LAC"      4.44     0
                "LAC"      2.47     0
                "LAC"      1.39  5.56
                "LAC"     11.32  5.66
                "LAC"      4.65  2.33
                "LAC"         0     0
                "LAC"      2.63  2.63
                "LAC"      1.39  1.39
                "LAC"         0     0
                "LAC"      10.2  6.12
                "LAC"      2.22     0
                "LAC"         0  5.49
                "LAC"     23.08 15.38
                "LAC"      5.56  5.56
                "LAC"      7.53  1.08
                "LAC"         0     0
                "LAC"      6.67    20
                "LAC"      2.82  7.04
                "LAC"     17.65  5.88
                "LAC"     14.04  5.26
                "LAC"      2.38  4.76
                "LAC"      6.25 18.75
                "LAC"      2.44  4.88
                "LAC"      8.33  5.95
                "LAC"         0     0
                "LAC"      1.39  5.56
                "LAC"      7.07     0
                "LAC"      3.23 16.13
                "LAC"      5.56  5.56
                "LAC"         0   3.3
                "LAC"      3.33     0
                "LAC"         0     0
                "LAC"      6.23  6.23
                "LAC"      7.48  9.84
                "LAC"       6.8   8.4
                "LAC"      12.5 11.72
                "LAC"      9.34  9.34
                "LAC"        19     8
                "LAC"     26.26  5.05
                "LAC"     17.17  4.04
                "LAC"     15.48  9.52
                "LAC"     26.25   2.5
                "LAC"     18.46  7.69
                "LAC"     11.63 14.73
                "LAC"     10.33   .58
                "LAC"      12.6    16
                "LAC"      12.6    16
                "LAC"      7.75  3.79
                "LAC"     12.28 21.05
                "LAC"     18.06 13.55
                "LAC"       9.8 13.73
                "LAC"     13.87 19.71
                "LAC"     16.57  6.24
                "LAC"      11.9  11.9
                "LAC"      12.8  1.22
                "LAC"      17.5  3.75
                "LAC"     18.44 17.23
                "LAC"      8.18  8.35
                "LAC"      3.23  3.23
                "LAC"        20  6.67
                "LAC"      3.33    10
                "LAC"     17.57   .68
                "LAC"     16.93  1.95
                "LAC"     15.79 12.28
                "LAC"     12.77 22.77
                "LAC"     16.06 18.25
                "LAC"     17.52 20.44
                "LAC"     21.25   7.5
                "LAC"     18.06  8.39
                "LAC"     30.34 11.24
                "LAC"     22.03  4.87
                "LAC"     22.29  7.23
                "LAC"     18.75 10.63
                "LAC"     18.75 10.63
                "LAC"     26.67  6.06
                "LAC"     11.76 17.65
                "LAC"     25.49 11.76
                "E&NA"        3     0
                "E&NA"     1.45   .29
                "E&NA"     6.52  6.52
                "E&NA"        4     4
                "E&NA"     1.23  1.23
                "E&NA"    13.33     0
                "E&NA"     6.52  2.17
                "E&NA"      2.5     0
                "E&NA"     1.45     0
                "E&NA"    14.57  7.95
                "E&NA"     1.56  1.25
                "E&NA"    11.11  9.52
                "E&NA"        4     0
                "E&NA"        1     0
                "E&NA"     2.37  1.18
                "E&NA"     6.67 13.33
                "E&NA"        4     8
                "E&NA"        5     0
                "E&NA"        0     0
                "E&NA"        2     0
                "E&NA"     5.52  1.15
                "E&NA"        0     0
                "E&NA"     7.32  9.76
                "E&NA"    10.17  8.47
                "E&NA"        0     0
                "E&NA"        1     0
                "E&NA"    14.29     0
                "E&NA"     3.57  1.79
                "E&NA"        0   .25
                "E&NA"     4.59   .92
                "E&NA"     1.45   .29
                "E&NA"     6.52  4.35
                "E&NA"     8.06  3.46
                "E&NA"     2.17  2.17
                "E&NA"      .38   .25
                "E&NA"    13.33     0
                "E&NA"     12.5  1.47
                "E&NA"        0     0
                "E&NA"      2.9   2.9
                "E&NA"        4     0
                "E&NA"    10.17  8.47
                "E&NA"        0     0
                "E&NA"        4  5.33
                "E&NA"        0     0
                "E&NA"     2.06  1.03
                "E&NA"        0     0
                "E&NA"        2     1
                "E&NA"    10.91  1.21
                "E&NA"     4.17 16.67
                "E&NA"    20.83  8.33
                "E&NA"      .58   .29
                "E&NA"     8.82  2.21
                "E&NA"     7.85  3.69
                "E&NA"     6.94  3.47
                "E&NA"     4.87  1.86
                "E&NA"     8.25     8
                "E&NA"     2.59   .86
                "E&NA"     7.67  4.67
                "E&NA"        8  3.33
                "E&NA"     7.67  4.67
                "E&NA"     3.79  6.44
                "E&NA"     7.76  3.81
                "E&NA"    12.83  4.57
                "E&NA"      8.5  10.5
                "E&NA"        8     7
                "E&NA"    19.55  4.95
                "E&NA"     7.16  6.88
                "E&NA"    16.46  1.83
                "E&NA"     8.61  5.96
                "E&NA"       14  2.67
                "E&NA"       14  2.67
                "E&NA"    10.64  1.42
                "E&NA"     9.35  7.19
                "E&NA"    11.19 11.19
                "E&NA"     12.8  11.6
                "E&NA"     12.3  5.74
                "E&NA"    15.83  1.67
                "E&NA"    15.83  1.67
                "E&NA"     17.5 10.83
                "E&NA"    11.56     2
                "E&NA"     8.18  5.45
                "E&NA"     19.8  3.96
                "E&NA"     9.67  2.33
                "E&NA"       12     3
                "E&NA"       18     4
                "E&NA"      8.5  10.5
                "E&NA"       13     4
                "E&NA"       12     7
                "E&NA"     11.5   7.5
                "E&NA"    15.08  3.02
                "E&NA"    24.87  4.57
                "E&NA"        8  7.43
                "E&NA"     12.5   2.5
                "E&NA"     15.9  7.11
                "E&NA"    16.96  6.09
                "E&NA"       14 14.67
                "E&NA"     5.33  6.67
                "E&NA"       20 13.33
                "E&NA"       12    16
                "E&NA"        4  1.33
                "E&NA"     8.08  6.06
                "E&NA"    17.73 11.35
                "E&NA"    13.48  5.67
                "E&NA"     14.5    11
                "E&NA"     6.77  8.65
                "E&NA"    11.38  3.35
                "E&NA"     9.52 11.11
                "E&NA"     6.35 14.29
                "E&NA"    11.04  5.84
                "E&NA"    11.67  8.33
                "E&NA"     6.67     5
                "E&NA"    13.33 11.67
                "E&NA"    15.64 18.44
                "E&NA"    12.57 10.29
                "E&NA"    11.41  6.18
                "E&NA"    13.69     8
                "E&NA"    13.13  5.63
                "E&NA"     6.82  4.55
                "E&NA"     6.18  3.86
                "E&NA"    13.91  5.22
                "E&NA"    11.18  5.92
                "E&NA"    15.89  5.96
                "E&NA"    12.58  3.31
                "E&NA"     18.8  12.4
                "E&NA"       15  14.5
                "E&NA"    12.63   7.4
                "E&NA"     14.5  14.5
                "E&NA"     14.5   5.5
                "E&NA"    14.07  4.52
                "E&NA"    12.44  6.54
                "E&NA"     6.25  8.33
                "E&NA"    11.48  6.56
                "E&NA"    12.22  5.56
                "E&NA"    14.29  4.76
                "E&NA"    14.29  4.76
                "E&NA"       10     5
                "E&NA"    12.07  7.76
                "E&NA"    15.22    10
                "E&NA"    14.67  9.33
                "E&NA"    17.33    14
                "E&NA"     12.4  16.4
                "E&NA"     12.4  16.4
                "E&NA"    14.29  5.71
                "E&NA"    22.86 15.71
                "E&NA"    22.92  5.83
                "E&NA"    25.42  7.08
                "E&NA"    22.08   7.5
                "E&NA"    12.87  4.95
                "E&NA"    13.86  5.94
                "E&NA"    16.09 10.87
                "E&NA"    16.52  7.83
                "E&NA"    11.48   8.2
                "E&NA"    13.11 12.57
                "E&NA"       35  1.67
                "E&NA"       20 13.33
                "E&NA"    16.67  5.56
                "E&NA"    26.75   7.9
                "E&NA"    15.64 18.99
                "E&NA"    24.69  6.28
                "E&NA"    22.35 18.99
                "E&NA"    16.96  5.43
                "E&NA"    21.43 14.29
                "E&NA"    28.57 10.71
                "E&NA"    10.71 14.29
                "E&NA"     7.14  3.57
                "E&NA"    12.31 10.92
                "E&NA"    14.75 13.11
                "E&NA"    13.97 16.76
                "E&NA"       21     6
                "E&NA"       22     7
                "E&NA"       26 13.33
                "E&NA"    24.32  4.73
                "E&NA"    22.76  9.76
                "E&NA"    24.44 18.25
                "E&NA"    22.39  4.48
                "E&NA"    25.84  9.42
                "E&NA"    16.05 12.89
                "E&NA"    18.62 15.76
                "E&NA"    29.63  7.41
                "E&NA"    17.28  4.94
                "E&NA"    23.33 18.33
                "E&NA"       26     8
                "E&NA"       16     3
                "E&NA"    18.72  8.67
                "E&NA"     33.1 13.24
                "E&NA"    16.17 12.77
                "E&NA"    15.56    10
                "E&NA"    25.74 11.88
                "E&NA"       17     9
                "E&NA"     17.5  18.5
                "E&NA"     20.8  19.6
                "E&NA"       25 11.67
                "E&NA"       26  8.67
                "E&NA"    20.63 13.47
                "E&NA"    18.93  8.28
                "E&NA"    20.71 13.61
                "E&NA"    20.71 13.61
                "E&NA"       20  6.67
                end
                
                
                set scheme s1color
                gr bar Maleyounger40percentage Femaleyounger40percentage ,over(Geo_regions, sort(2) label(angle(0) labsize(tiny))) ///
                title ("Member of Parliament younger than 30 years old") ///
                subtitle (" 2008-2023 ") ///
                note("", size(vsmall)) ///
                legend(order (1 "Men" 2 "Women" ) rows(1) size(small) ) ///
                ylabel(0 "0 %" 10 "10%" 20 "20%" 30 "30%" 40 "40%" 50 "50%" , angle(0)labsize(small) ) ///
                bar(1, fcolor(emidblue) lcolor(emidblue) ) bar(2, fcolor(red) lcolor(red)) ///
                ytitle ("Percentage") name(MP1, replace) 
                
                bysort Geo_regions : gen Geo_regions2 = Geo_regions + " (" + strofreal(_N) + ")" 
                
                myaxis Geo_regions3=Geo_regions2, sort(mean Female)
                
                stripplot Male Female, by(Geo_regions3, subtitle(% Members of Parliament younger than 40) note("") row(2)) centre refline vertical cumul cumprob xla(1 "Men" 2 "Women") ytitle("") name(MP2, replace)
                Click image for larger version

Name:	MP1.png
Views:	1
Size:	53.1 KB
ID:	1757294
                Click image for larger version

Name:	MP2.png
Views:	1
Size:	108.9 KB
ID:	1757295

                Comment

                Working...
                X