Hello everyone,
I am struggling a bit with interpreting my moderation effect. The questions relate to the effects of my independent variable gender_diversity and is marked in the following.
In my regression the relationship between my variables of interest is positive:
see:
Code:
Results:
If I am performing my moderation I get confusing results.
The direct effect turns negative and the moderation effect turns positive. Can anyone help me with the interpretation of these results?
Code:
Results:
I am confused since the coefficients change from positive to negative and back.
Thanks in advance and best regards,
Jana
I am struggling a bit with interpreting my moderation effect. The questions relate to the effects of my independent variable gender_diversity and is marked in the following.
In my regression the relationship between my variables of interest is positive:
see:
Code:
Code:
xtreg ln_totalplatact educational_diversity gender_diversity background_diversity tenure_diversity itraffic growth firm_age TMT_size i.year , fe vce(robust)
Code:
Fixed-effects (within) regression Number of obs = 703 Group variable: group_id Number of groups = 172 R-squared: Obs per group: Within = 0.6118 min = 1 Between = 0.0967 avg = 4.1 Overall = 0.2024 max = 7 F(13,171) = 138.48 corr(u_i, Xb) = 0.0245 Prob > F = 0.0000 (Std. err. adjusted for 172 clusters in group_id) --------------------------------------------------------------------------------------- | Robust ln_totalplatact | Coefficient std. err. t P>|t| [95% conf. interval] ----------------------+---------------------------------------------------------------- educational_diversity | -.2721108 .6413871 -0.42 0.672 -1.538167 .9939449 gender_diversity | 2.533689 1.103264 2.30 0.023 .3559193 4.711459 background_diversity | 3.274338 1.63843 2.00 0.047 .0401857 6.50849 tenure_diversity | 1.071932 .551466 1.94 0.054 -.0166253 2.160489 itraffic | .1824114 .1852301 0.98 0.326 -.1832205 .5480434 growth | .0975318 .0733507 1.33 0.185 -.0472576 .2423213 firm_age | .4748669 .0791355 6.00 0.000 .3186586 .6310751 TMT_size | -.0077124 .0919141 -0.08 0.933 -.1891448 .17372 | year | 2015 | .4241251 .160963 2.63 0.009 .1063948 .7418554 2016 | .6108117 .1655276 3.69 0.000 .2840711 .9375523 2017 | 1.097878 .2248011 4.88 0.000 .6541359 1.541621 2018 | 1.404356 .3116293 4.51 0.000 .7892205 2.019492 2019 | 1.446496 .3079919 4.70 0.000 .8385399 2.054451 2020 | 0 (omitted) | _cons | 7.330491 2.492535 2.94 0.004 2.410391 12.25059 ----------------------+---------------------------------------------------------------- sigma_u | 3.2468355 sigma_e | 1.0495547 rho | .90539232 (fraction of variance due to u_i) ---------------------------------------------------------------------------------------
The direct effect turns negative and the moderation effect turns positive. Can anyone help me with the interpretation of these results?
Code:
Code:
xtreg ln_totalplatact c.educational_diversity##c.dynamism c.gender_diversity##c.dynamism c.background_diversity##c.dynamism c.tenure_diversity##c.dynamism total_countries growth TMT_size itraffic i.year , fe vce(robust)
Results:
Code:
Fixed-effects (within) regression Number of obs = 367 Group variable: group_id Number of groups = 152 R-squared: Obs per group: Within = 0.8148 min = 1 Between = 0.4025 avg = 2.4 Overall = 0.3512 max = 3 F(15,151) = 162.92 corr(u_i, Xb) = 0.3930 Prob > F = 0.0000 (Std. err. adjusted for 152 clusters in group_id) ---------------------------------------------------------------------------------------------------- | Robust ln_totalplatact | Coefficient std. err. t P>|t| [95% conf. interval] -----------------------------------+---------------------------------------------------------------- educational_diversity | .0824904 .7078749 0.12 0.907 -1.316128 1.481109 dynamism | -1.18239 2.170082 -0.54 0.587 -5.470036 3.105257 | c.educational_diversity#c.dynamism | -.2313091 2.239248 -0.10 0.918 -4.655613 4.192995 | gender_diversity | -.7022033 .4084872 -1.72 0.088 -1.509292 .1048852 dynamism | 0 (omitted) | c.gender_diversity#c.dynamism | 4.326052 2.070952 2.09 0.038 .2342666 8.417837 | background_diversity | .8788531 .7945476 1.11 0.270 -.6910132 2.448719 dynamism | 0 (omitted) | c.background_diversity#c.dynamism | 2.179874 2.998382 0.73 0.468 -3.744326 8.104073 | tenure_diversity | .5108906 .3411474 1.50 0.136 -.1631481 1.184929 dynamism | 0 (omitted) | c.tenure_diversity#c.dynamism | .3655461 1.528332 0.24 0.811 -2.654131 3.385223 | total_countries | .0261214 .0089363 2.92 0.004 .0084651 .0437778 growth | .0417982 .0596745 0.70 0.485 -.0761065 .1597029 TMT_size | .0089453 .0646107 0.14 0.890 -.1187124 .136603 itraffic | .1905962 .1421331 1.34 0.182 -.0902302 .4714226 | year | 2019 | .2450912 .0985784 2.49 0.014 .0503201 .4398623 2020 | -.8784332 .2218638 -3.96 0.000 -1.316792 -.4400749 | _cons | 11.45734 2.029945 5.64 0.000 7.446572 15.4681 -----------------------------------+---------------------------------------------------------------- sigma_u | 3.2363045 sigma_e | .39452096 rho | .98535683 (fraction of variance due to u_i) ----------------------------------------------------------------------------------------------------
Thanks in advance and best regards,
Jana

Comment