Hi. I am studying the effect of a policy "active_treat" on outcome "acceptance". I have attached an excerpt of the data I'm working with. I am using repeated cross sections between 2010-2019. Each observation is a health care facility, and some facilities may be observed in multiple years (but I cannot confirm this as the data does not include facility level identifiers). Depending on my specification N ranges between 70,000-90,000 approximately. (approximately 10,000 observations per year)
active_treat is a binary that is equal to 1 if my policy of interest is in place
acceptance is my outcome of interest, basically whether the facility accepts a certain type of payment.
UmemployPercent is a continuous measure of a state's unemployment rate
FPLbelow200 is a continuous measure of a percent of state's population living at or below 200% of federal poverty level (FPL)
dem_gov is a binary indicator for whether the governor of the state, at the year of interview, was a democrat
private_profit is a binary indicator for whether a facility is for-profit or non-profit
State is a string variable indicating State
State_num is a numeric variable indicating State
year_num is the year the facility interviewed
The timing of policy adoption (the treatment) varies, leading to concerns regarding heterogenous treatment effects when using typical TWFE.
However I obtain the following with many values omitted. I understand that always treated units are ignored, however, I'm not sure why so many cohorts are completely omitted. I know in my data, that many states implemented the policy in 2014.
I would appreciate any insights regarding this. Thank you.
active_treat is a binary that is equal to 1 if my policy of interest is in place
acceptance is my outcome of interest, basically whether the facility accepts a certain type of payment.
UmemployPercent is a continuous measure of a state's unemployment rate
FPLbelow200 is a continuous measure of a percent of state's population living at or below 200% of federal poverty level (FPL)
dem_gov is a binary indicator for whether the governor of the state, at the year of interview, was a democrat
private_profit is a binary indicator for whether a facility is for-profit or non-profit
State is a string variable indicating State
State_num is a numeric variable indicating State
year_num is the year the facility interviewed
The timing of policy adoption (the treatment) varies, leading to concerns regarding heterogenous treatment effects when using typical TWFE.
However I obtain the following with many values omitted. I understand that always treated units are ignored, however, I'm not sure why so many cohorts are completely omitted. I know in my data, that many states implemented the policy in 2014.
I would appreciate any insights regarding this. Thank you.
Code:
. tab year_expand year_expand | Freq. Percent Cum. ------------+----------------------------------- 0 | 32,935 33.81 33.81 2010 | 2,206 2.26 36.08 2011 | 1,967 2.02 38.10 2014 | 46,951 48.20 86.30 2015 | 8,055 8.27 94.57 2016 | 3,848 3.95 98.52 2017 | 1,441 1.48 100.00 ------------+----------------------------------- Total | 97,403 100.00
Code:
. csdid accept_medicaid active_treat UnemployPercent FPLbelow200 dem_gov private_p > rofit, t(year_num) g(year_expand) cluster(State_num) Units always treated found. These will be ignored xxxxxxxxxx.x......xxxxxxxxxxxxx...x.xxxx.....xxxx. .xxx Difference-in-difference with Multiple Time Periods Number of obs = 42,326 Outcome model : least squares Treatment model: inverse probability (Std. err. adjusted for 51 clusters in State_num) ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- g2010 | t_2010_2011 | 0 (omitted) t_2010_2012 | 0 (omitted) t_2010_2013 | 0 (omitted) t_2010_2014 | 0 (omitted) t_2010_2015 | 0 (omitted) t_2010_2016 | 0 (omitted) t_2010_2017 | 0 (omitted) t_2010_2018 | 0 (omitted) t_2010_2019 | 0 (omitted) -------------+---------------------------------------------------------------- g2011 | t_2010_2011 | 0 (omitted) t_2010_2012 | .0248805 .0225803 1.10 0.271 -.0193762 .0691371 t_2010_2013 | 0 (omitted) t_2010_2014 | .0856161 .0135796 6.30 0.000 .0590006 .1122316 t_2010_2015 | .0367183 .0317725 1.16 0.248 -.0255546 .0989912 t_2010_2016 | -.0099473 .0389002 -0.26 0.798 -.0861903 .0662956 t_2010_2017 | .0954174 .0898442 1.06 0.288 -.0806741 .2715088 t_2010_2018 | .1302272 .093643 1.39 0.164 -.0533097 .3137641 t_2010_2019 | .1726064 .1083423 1.59 0.111 -.0397406 .3849534 -------------+---------------------------------------------------------------- g2014 | t_2010_2011 | 0 (omitted) t_2011_2012 | 0 (omitted) t_2012_2013 | 0 (omitted) t_2013_2014 | 0 (omitted) t_2013_2015 | 0 (omitted) t_2013_2016 | 0 (omitted) t_2013_2017 | 0 (omitted) t_2013_2018 | 0 (omitted) t_2013_2019 | 0 (omitted) -------------+---------------------------------------------------------------- g2015 | t_2010_2011 | 0 (omitted) t_2011_2012 | 0 (omitted) t_2012_2013 | 0 (omitted) t_2013_2014 | 0 (omitted) t_2014_2015 | -.0567201 .0603586 -0.94 0.347 -.1750209 .0615806 t_2014_2016 | -.023359 .042255 -0.55 0.580 -.1061774 .0594593 t_2014_2017 | -.0333143 .0558177 -0.60 0.551 -.142715 .0760863 t_2014_2018 | 0 (omitted) t_2014_2019 | .1916928 .1054545 1.82 0.069 -.0149942 .3983798 -------------+---------------------------------------------------------------- g2016 | t_2010_2011 | 0 (omitted) t_2011_2012 | 0 (omitted) t_2012_2013 | 0 (omitted) t_2013_2014 | 0 (omitted) t_2014_2015 | -.0078914 .0168854 -0.47 0.640 -.0409861 .0252033 t_2015_2016 | -.0108443 .0084924 -1.28 0.202 -.027489 .0058004 t_2015_2017 | .0162566 .0249807 0.65 0.515 -.0327047 .0652179 t_2015_2018 | .036864 .0352495 1.05 0.296 -.0322237 .1059517 t_2015_2019 | .0185099 .0383815 0.48 0.630 -.0567164 .0937363 -------------+---------------------------------------------------------------- g2017 | t_2010_2011 | 0 (omitted) t_2011_2012 | 0 (omitted) t_2012_2013 | 0 (omitted) t_2013_2014 | 0 (omitted) t_2014_2015 | .0036289 .0063906 0.57 0.570 -.0088965 .0161544 t_2015_2016 | .0434556 .0183421 2.37 0.018 .0075057 .0794054 t_2016_2017 | 0 (omitted) t_2016_2018 | 0 (omitted) t_2016_2019 | 0 (omitted) ------------------------------------------------------------------------------ Control: Never Treated See Callaway and Sant'Anna (2021) for details . estat all Pretrend Test. H0 All Pre-treatment are equal to 0 chi2(3) = 6.9191 p-value = 0.0745 Average Treatment Effect on Treated ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- ATT | .0294693 .0350939 0.84 0.401 -.0393135 .098252 ------------------------------------------------------------------------------ ATT by group ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- GAverage | .0239749 .032544 0.74 0.461 -.0398102 .08776 G2011 | .0765026 .036721 2.08 0.037 .0045308 .1484744 G2015 | .0135714 .054365 0.25 0.803 -.0929821 .1201249 G2016 | .0151966 .0203914 0.75 0.456 -.0247698 .0551629 ------------------------------------------------------------------------------ ATT by Calendar Period ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- CAverage | .035675 .0282508 1.26 0.207 -.0196956 .0910456 T2012 | .0248805 .0225803 1.10 0.271 -.0193762 .0691371 T2014 | .0856161 .0135796 6.30 0.000 .0590006 .1122316 T2015 | -.0330791 .0572429 -0.58 0.563 -.1452731 .0791149 T2016 | -.0168588 .0254302 -0.66 0.507 -.0667011 .0329835 T2017 | .0038231 .0516333 0.07 0.941 -.0973763 .1050224 T2018 | .0645174 .0588036 1.10 0.273 -.0507355 .1797704 T2019 | .1208257 .072803 1.66 0.097 -.0218656 .263517 ------------------------------------------------------------------------------ ATT by Periods Before and After treatment Event Study:Dynamic effects ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- Pre_avg | .0017626 .0103904 0.17 0.865 -.0186022 .0221274 Post_avg | .0593985 .0376136 1.58 0.114 -.0143228 .1331198 Tm2 | .0036289 .0063906 0.57 0.570 -.0088965 .0161544 Tm1 | -.0001037 .017558 -0.01 0.995 -.0345167 .0343093 Tp0 | -.0362626 .0388409 -0.93 0.351 -.1123892 .0398641 Tp1 | -.001911 .0278988 -0.07 0.945 -.0565916 .0527696 Tp2 | -.0037375 .0477223 -0.08 0.938 -.0972715 .0897965 Tp3 | .0383862 .0333676 1.15 0.250 -.027013 .1037855 Tp4 | .1498078 .0965945 1.55 0.121 -.0395139 .3391295 Tp5 | -.0099473 .0389002 -0.26 0.798 -.0861903 .0662956 Tp6 | .0954174 .0898442 1.06 0.288 -.0806741 .2715088 Tp7 | .1302272 .093643 1.39 0.164 -.0533097 .3137641 Tp8 | .1726064 .1083423 1.59 0.111 -.0397406 .3849534 ------------------------------------------------------------------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(acceptance active_treat) double UnemployPercent float(FPLbelow200 dem_gov private_profit) str20 State long State_num int year_num 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 0 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 . 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 . 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 0 0 10.4 .4023 0 1 "Alabama" 1 2010 1 0 10.4 .4023 0 0 "Alabama" 1 2010 end label values accept_medicaid accept_medicaid label def accept_medicaid 0 "No", modify label def accept_medicaid 1 "Yes", modify label values dem_gov dem_gov label def dem_gov 0 "Non Democrat", modify label values private_profit private_profit label def private_profit 0 "Non Profit", modify label def private_profit 1 "For Profit", modify label values State_num State_num label def State_num 1 "Alabama", modify
Comment