Dear community members
The xtlogit with fe is producing singularity. How do I know which model is appropriate, given that can't perform Hausman test. May anyone suggest a way out?
Data--- I have repeated scores of the same student in various exams that he took in different papers and semesters.
I am stuck, and not able to know, which model (fe re or me) is appropriate for my data.
How do I conduct Hausman test for the produced results (shown in code)
The xtlogit with fe is producing singularity. How do I know which model is appropriate, given that can't perform Hausman test. May anyone suggest a way out?
Code:
. xtlogit Positive_score1 i.Student_Caste_New i.T_jati_new attendence_percent i.T_nature i.course1 semester i.T_gender > , re Fitting comparison model: Iteration 0: log likelihood = -6916.3047 Iteration 1: log likelihood = -6227.3535 Iteration 2: log likelihood = -6223.3065 Iteration 3: log likelihood = -6223.3052 Iteration 4: log likelihood = -6223.3052 Fitting full model: tau = 0.0 log likelihood = -6223.3052 tau = 0.1 log likelihood = -6205.3286 tau = 0.2 log likelihood = -6215.0659 Iteration 0: log likelihood = -6205.3286 Iteration 1: log likelihood = -6204.9602 Iteration 2: log likelihood = -6204.96 Random-effects logistic regression Number of obs = 10,091 Group variable: collegerollno Number of groups = 669 Random effects u_i ~ Gaussian Obs per group: min = 3 avg = 15.1 max = 16 Integration method: mvaghermite Integration pts. = 12 Wald chi2(14) = 910.59 Log likelihood = -6204.96 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------ Positive_score1 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------+---------------------------------------------------------------- Student_Caste_New | SC/ST | -.1490578 .0669102 -2.23 0.026 -.2801994 -.0179163 OBC | -.1016576 .0681051 -1.49 0.136 -.2351412 .0318259 | T_jati_new | 2 | -.0628621 .0654247 -0.96 0.337 -.1910922 .0653681 3 | .0206409 .0692384 0.30 0.766 -.115064 .1563457 | attendence_percent | .0108409 .0013488 8.04 0.000 .0081973 .0134845 2.T_nature | -.0030631 .0540264 -0.06 0.955 -.108953 .1028267 | course1 | eco | .9048065 .0888302 10.19 0.000 .7307025 1.078911 eng | -.3349528 .0972555 -3.44 0.001 -.5255701 -.1443354 hindi | 1.290587 .1006605 12.82 0.000 1.093296 1.487878 history | .3157114 .1174965 2.69 0.007 .0854225 .5460003 maths | .6986293 .0925691 7.55 0.000 .5171973 .8800614 pol | 2.036058 .0943254 21.59 0.000 1.851184 2.220933 | semester | .0823136 .0192908 4.27 0.000 .0445044 .1201228 2.T_gender | .2276783 .0720022 3.16 0.002 .0865565 .3688 _cons | -1.448744 .1504831 -9.63 0.000 -1.743686 -1.153803 -------------------+---------------------------------------------------------------- /lnsig2u | -2.117038 .2086743 -2.526033 -1.708044 -------------------+---------------------------------------------------------------- sigma_u | .3469692 .0362018 .2827997 .4256992 rho | .0353016 .0071065 .0237328 .0522084 ------------------------------------------------------------------------------------ LR test of rho=0: chibar2(01) = 36.69 Prob >= chibar2 = 0.000 . xtlogit Positive_score1 i.Student_Caste_New i.T_jati_new attendence_percent i.T_nature i.course1 semester i.T_gender > , fe note: multiple positive outcomes within groups encountered. note: 8 groups (122 obs) omitted because of all positive or all negative outcomes. note: 2.Student_Caste_New omitted because of no within-group variance. note: 3.Student_Caste_New omitted because of no within-group variance. note: 2.course1 omitted because of no within-group variance. note: 3.course1 omitted because of no within-group variance. note: 4.course1 omitted because of no within-group variance. note: 5.course1 omitted because of no within-group variance. note: 6.course1 omitted because of no within-group variance. note: 7.course1 omitted because of no within-group variance. Iteration 0: log likelihood = -4796.8683 Iteration 1: log likelihood = -4781.9886 Iteration 2: log likelihood = -4781.9698 Iteration 3: log likelihood = -4781.9698 Conditional fixed-effects logistic regression Number of obs = 9,969 Group variable: collegerollno Number of groups = 661 Obs per group: min = 3 avg = 15.1 max = 16 LR chi2(6) = 51.67 Log likelihood = -4781.9698 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------ Positive_score1 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------+---------------------------------------------------------------- Student_Caste_New | SC/ST | 0 (omitted) OBC | 0 (omitted) | T_jati_new | 2 | -.0534922 .0658445 -0.81 0.417 -.1825452 .0755607 3 | .0108931 .070487 0.15 0.877 -.1272589 .1490451 | attendence_percent | .0110619 .0017746 6.23 0.000 .0075838 .01454 2.T_nature | .0140017 .0547203 0.26 0.798 -.0932482 .1212516 | course1 | eco | 0 (omitted) eng | 0 (omitted) hindi | 0 (omitted) history | 0 (omitted) maths | 0 (omitted) pol | 0 (omitted) | semester | .0865461 .0209006 4.14 0.000 .0455818 .1275105 2.T_gender | .2040773 .0723231 2.82 0.005 .0623267 .3458278 ------------------------------------------------------------------------------------
I am stuck, and not able to know, which model (fe re or me) is appropriate for my data.
How do I conduct Hausman test for the produced results (shown in code)
Comment