Rejection is evidence against the RE model. So if no rejection, then RE model is fine. See Schunck (2013) at p. 69.
-
Login or Register
- Log in with
. xtlogit Positive_disc01 i.Student_Caste_New i.T_jati_new attendence_percent i.T_nature i.course1 semester > i.T_gender , fe note: multiple positive outcomes within groups encountered. note: 8 groups (122 obs) omitted because of all positive or all negative outcomes. note: 2.Student_Caste_New omitted because of no within-group variance. note: 3.Student_Caste_New omitted because of no within-group variance. note: 2.course1 omitted because of no within-group variance. note: 3.course1 omitted because of no within-group variance. note: 4.course1 omitted because of no within-group variance. note: 5.course1 omitted because of no within-group variance. note: 6.course1 omitted because of no within-group variance. note: 7.course1 omitted because of no within-group variance. Iteration 0: log likelihood = -4796.8683 Iteration 1: log likelihood = -4781.9886 Iteration 2: log likelihood = -4781.9698 Iteration 3: log likelihood = -4781.9698 Conditional fixed-effects logistic regression Number of obs = 9,969 Group variable: collegerollno Number of groups = 661 Obs per group: min = 3 avg = 15.1 max = 16 LR chi2(6) = 51.67 Log likelihood = -4781.9698 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------ Positive_disc01 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------+---------------------------------------------------------------- Student_Caste_New | SC/ST | 0 (omitted) OBC | 0 (omitted) | T_jati_new | 2 | -.0534922 .0658445 -0.81 0.417 -.1825452 .0755607 3 | .0108931 .070487 0.15 0.877 -.1272589 .1490451 | attendence_percent | .0110619 .0017746 6.23 0.000 .0075838 .01454 2.T_nature | .0140017 .0547203 0.26 0.798 -.0932482 .1212516 | course1 | eco | 0 (omitted) eng | 0 (omitted) hindi | 0 (omitted) history | 0 (omitted) maths | 0 (omitted) pol | 0 (omitted) | semester | .0865461 .0209006 4.14 0.000 .0455818 .1275105 2.T_gender | .2040773 .0723231 2.82 0.005 .0623267 .3458278 ------------------------------------------------------------------------------------
. logit Positive_disc01 i.Student_Caste_New i.T_jati_new attendence_percent i.T_nature i.course1 i.semester > i.T_gender, vce (robust) Iteration 0: log pseudolikelihood = -6916.3047 Iteration 1: log pseudolikelihood = -6201.3585 Iteration 2: log pseudolikelihood = -6197.3977 Iteration 3: log pseudolikelihood = -6197.3964 Iteration 4: log pseudolikelihood = -6197.3964 Logistic regression Number of obs = 10,091 Wald chi2(17) = 1242.22 Prob > chi2 = 0.0000 Log pseudolikelihood = -6197.3964 Pseudo R2 = 0.1039 ------------------------------------------------------------------------------------ | Robust Positive_disc01 | Coefficient std. err. z P>|z| [95% conf. interval] -------------------+---------------------------------------------------------------- Student_Caste_New | SC/ST | -.1396649 .0564622 -2.47 0.013 -.2503289 -.0290009 OBC | -.1004951 .0566178 -1.77 0.076 -.211464 .0104737 | T_jati_new | 2 | -.0330889 .0666478 -0.50 0.620 -.1637162 .0975385 3 | .0512036 .0685315 0.75 0.455 -.0831156 .1855229 | attendence_percent | .0109082 .0012411 8.79 0.000 .0084757 .0133408 2.T_nature | .0455933 .0525003 0.87 0.385 -.0573055 .1484921 | course1 | eco | .8815111 .0747911 11.79 0.000 .7349233 1.028099 eng | -.3306421 .0822744 -4.02 0.000 -.4918969 -.1693873 hindi | 1.269306 .084291 15.06 0.000 1.104099 1.434513 history | .323667 .0984176 3.29 0.001 .130772 .516562 maths | .6725393 .0771584 8.72 0.000 .5213116 .823767 pol | 1.994379 .0807284 24.70 0.000 1.836154 2.152603 | semester | 2 | .0811282 .0868599 0.93 0.350 -.089114 .2513704 3 | .1893041 .0759795 2.49 0.013 .0403871 .3382211 4 | .5681824 .080683 7.04 0.000 .4100465 .7263182 5 | .2149754 .0795153 2.70 0.007 .0591284 .3708225 | 2.T_gender | .20029 .0712817 2.81 0.005 .0605805 .3399996 _cons | -1.452294 .1297851 -11.19 0.000 -1.706668 -1.19792 ------------------------------------------------------------------------------------
Comment