Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • PS matching

    Hi everyone,
    I am facing some troubles in understanding which STATA command is best at estimating propensity score matching
    Firstly, when i applied psmatch2 command, results shows insignificant relationship.

    Code:
    psmatch2 t_anc $xlist, out( healthy)
    
    Probit regression                               Number of obs     =      1,888
                                                    LR chi2(3)        =       9.47
                                                    Prob > chi2       =     0.0237
    Log likelihood = -200.40082                     Pseudo R2         =     0.0231
    
    ------------------------------------------------------------------------------
           t_anc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             AGE |   .0052712   .0122269     0.43   0.666    -.0186931    .0292355
            EDU |  -.0149966   .0427118    -0.35   0.726    -.0987102     .068717
            b_od |   .0955766   .0341968     2.79   0.005      .028552    .1626012
           _cons |    1.68904   .3680223     4.59   0.000     .9677291     2.41035
    ------------------------------------------------------------------------------
    ----------------------------------------------------------------------------------------
            Variable     Sample |    Treated     Controls   Difference         S.E.   T-stat
    ----------------------------+-----------------------------------------------------------
             healthy  Unmatched | .725745257   .534883721   .190861537   .069055841     2.76
                            ATT | .725745257    .47100271   .254742547    .10443035     2.44
    ----------------------------+-----------------------------------------------------------
    Note: S.E. does not take into account that the propensity score is estimated.
    
               | psmatch2:
     psmatch2: |   Common
     Treatment |  support
    assignment | On suppor |     Total
    -----------+-----------+----------
     Untreated |        43 |        43
       Treated |     1,845 |     1,845
    -----------+-----------+----------
         Total |     1,888 |     1,888
    However when i use following teffects command results are significant.

    Code:
     teffects psmatch ( healthy ) ( t_anc $xlist , logit), atet
    
    Treatment-effects estimation                   Number of obs      =      1,888
    Estimator      : propensity-score matching     Matches: requested =          1
    Outcome model  : matching                                     min =          1
    Treatment model: logit                                        max =         11
    ------------------------------------------------------------------------------
                 |              AI Robust
         healthy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    ATET         |
           t_anc |
       (1 vs 0)  |   .2623306    .096744     2.71   0.007     .0727158    .4519454
    ------------------------------------------------------------------------------
    Next, when I applied kmatch on my model results are significant which contradicts with the results of psmatch2. Moreover i'm facing difficulty for how to read matched and controls results.

    Code:
    kmatch ps t_anc $xlist (healthy)
    (computing bandwidth for ATT ... done)
    (computing bandwidth for ATC ... done)
    
    Propensity-score kernel matching                Number of obs     =      1,888
                                                    Kernel            =       epan
    Treatment   : t_anc = 1
    Covariates  : age edu b_od
    PS model    : logit (pr)
    
    Matching statistics
    ------------------------------------------------------------------------------------------
               |             Matched             |             Controls            | Bandwidth
               |       Yes         No      Total |      Used     Unused      Total |          
    -----------+---------------------------------+---------------------------------+----------
       Treated |      1767         78       1845 |        43          0         43 |  .0016262
     Untreated |        43          0         43 |       819       1026       1845 |  .0002598
      Combined |      1810         78       1888 |       862       1026       1888 |          
    ------------------------------------------------------------------------------------------
    
    Treatment-effects estimation
    ------------------------------------------------------------------------------
         healthy |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             ATE |   .2216293   .0912343     2.43   0.015     .0426985    .4005601
    ------------------------------------------------------------------------------
    similarly, significant results are also obtained from mahalanobis, for this i have applied following command

    Code:
      kmatch md t_anc $xlist (healthy), ate att atc
    (computing bandwidth for ATT ... done)
    (computing bandwidth for ATC ... done)
    
    Multivariate-distance kernel matching           Number of obs     =      1,888
                                                    Kernel            =       epan
    Treatment   : t_anc = 1
    Metric      : mahalanobis
    Covariates  : age edu b_od
    
    Matching statistics
    ------------------------------------------------------------------------------------------
               |             Matched             |             Controls            | Bandwidth
               |       Yes         No      Total |      Used     Unused      Total |          
    -----------+---------------------------------+---------------------------------+----------
       Treated |      1788         57       1845 |        43          0         43 |  1.708896
     Untreated |        43          0         43 |       944        901       1845 |  .5696319
      Combined |      1831         57       1888 |       987        901       1888 |          
    ------------------------------------------------------------------------------------------
    
    Treatment-effects estimation
    ------------------------------------------------------------------------------
         healthy |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             ATE |   .2013704   .0814573     2.47   0.014     .0416145    .3611263
             ATT |   .2014745   .0816728     2.47   0.014     .0412961    .3616529
             ATC |   .1970415   .0792827     2.49   0.013     .0415505    .3525326
    ------------------------------------------------------------------------------
    Questions:
    1- Problem is why psmatch2 is giving me insignificant results however treatment effects estimation, kernel matching and mahalanobis gives significant results.
    2- Among psmatch2 and kmatch commands which one should be preferred?
    3- How to read kernel matching results for both matched and controls?
    Last edited by Moomal Khan; 24 Sep 2022, 09:44.

  • #2
    Originally posted by Moomal Khan View Post
    Questions:
    1- Problem is why psmatch2 is giving me insignificant results . . .
    Why do you think psmatch2 is giving insignificant results? The t-statistic for ATT (average treatment effect on the treated) is 2.44, which is statistically significant at the conventional p < .05 level and is similar to the z-scores of 2.71 reported by teffects psmatch and 2.47 reported by kmatch. If you want Abadie-Imbens adjusted standard errors in psmatch2, use the ai() option.

    (psmatch2 was written by Leuven and Sianesi, and kmatch was written by Jann. Both are available from SSC.)

    I'm sorry that I can't help with questions 2 or 3.
    David Radwin
    Senior Researcher, California Competes
    californiacompetes.org
    Pronouns: He/Him

    Comment

    Working...
    X