Hi everyone,
I am facing some troubles in understanding which STATA command is best at estimating propensity score matching
Firstly, when i applied psmatch2 command, results shows insignificant relationship.
However when i use following teffects command results are significant.
Next, when I applied kmatch on my model results are significant which contradicts with the results of psmatch2. Moreover i'm facing difficulty for how to read matched and controls results.
similarly, significant results are also obtained from mahalanobis, for this i have applied following command
Questions:
1- Problem is why psmatch2 is giving me insignificant results however treatment effects estimation, kernel matching and mahalanobis gives significant results.
2- Among psmatch2 and kmatch commands which one should be preferred?
3- How to read kernel matching results for both matched and controls?
I am facing some troubles in understanding which STATA command is best at estimating propensity score matching
Firstly, when i applied psmatch2 command, results shows insignificant relationship.
Code:
psmatch2 t_anc $xlist, out( healthy) Probit regression Number of obs = 1,888 LR chi2(3) = 9.47 Prob > chi2 = 0.0237 Log likelihood = -200.40082 Pseudo R2 = 0.0231 ------------------------------------------------------------------------------ t_anc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- AGE | .0052712 .0122269 0.43 0.666 -.0186931 .0292355 EDU | -.0149966 .0427118 -0.35 0.726 -.0987102 .068717 b_od | .0955766 .0341968 2.79 0.005 .028552 .1626012 _cons | 1.68904 .3680223 4.59 0.000 .9677291 2.41035 ------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------- Variable Sample | Treated Controls Difference S.E. T-stat ----------------------------+----------------------------------------------------------- healthy Unmatched | .725745257 .534883721 .190861537 .069055841 2.76 ATT | .725745257 .47100271 .254742547 .10443035 2.44 ----------------------------+----------------------------------------------------------- Note: S.E. does not take into account that the propensity score is estimated. | psmatch2: psmatch2: | Common Treatment | support assignment | On suppor | Total -----------+-----------+---------- Untreated | 43 | 43 Treated | 1,845 | 1,845 -----------+-----------+---------- Total | 1,888 | 1,888
Code:
teffects psmatch ( healthy ) ( t_anc $xlist , logit), atet Treatment-effects estimation Number of obs = 1,888 Estimator : propensity-score matching Matches: requested = 1 Outcome model : matching min = 1 Treatment model: logit max = 11 ------------------------------------------------------------------------------ | AI Robust healthy | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATET | t_anc | (1 vs 0) | .2623306 .096744 2.71 0.007 .0727158 .4519454 ------------------------------------------------------------------------------
Code:
kmatch ps t_anc $xlist (healthy) (computing bandwidth for ATT ... done) (computing bandwidth for ATC ... done) Propensity-score kernel matching Number of obs = 1,888 Kernel = epan Treatment : t_anc = 1 Covariates : age edu b_od PS model : logit (pr) Matching statistics ------------------------------------------------------------------------------------------ | Matched | Controls | Bandwidth | Yes No Total | Used Unused Total | -----------+---------------------------------+---------------------------------+---------- Treated | 1767 78 1845 | 43 0 43 | .0016262 Untreated | 43 0 43 | 819 1026 1845 | .0002598 Combined | 1810 78 1888 | 862 1026 1888 | ------------------------------------------------------------------------------------------ Treatment-effects estimation ------------------------------------------------------------------------------ healthy | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | .2216293 .0912343 2.43 0.015 .0426985 .4005601 ------------------------------------------------------------------------------
Code:
kmatch md t_anc $xlist (healthy), ate att atc (computing bandwidth for ATT ... done) (computing bandwidth for ATC ... done) Multivariate-distance kernel matching Number of obs = 1,888 Kernel = epan Treatment : t_anc = 1 Metric : mahalanobis Covariates : age edu b_od Matching statistics ------------------------------------------------------------------------------------------ | Matched | Controls | Bandwidth | Yes No Total | Used Unused Total | -----------+---------------------------------+---------------------------------+---------- Treated | 1788 57 1845 | 43 0 43 | 1.708896 Untreated | 43 0 43 | 944 901 1845 | .5696319 Combined | 1831 57 1888 | 987 901 1888 | ------------------------------------------------------------------------------------------ Treatment-effects estimation ------------------------------------------------------------------------------ healthy | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | .2013704 .0814573 2.47 0.014 .0416145 .3611263 ATT | .2014745 .0816728 2.47 0.014 .0412961 .3616529 ATC | .1970415 .0792827 2.49 0.013 .0415505 .3525326 ------------------------------------------------------------------------------
1- Problem is why psmatch2 is giving me insignificant results however treatment effects estimation, kernel matching and mahalanobis gives significant results.
2- Among psmatch2 and kmatch commands which one should be preferred?
3- How to read kernel matching results for both matched and controls?
Comment