Hello Stata community,
I'm trying to implement an RDD design and am following Cattaneo et al. (2019). Following their paper,
should yield the same coefficient for T - this works with test data but not with my actual data. Below you find my output. Any idea what the problem might be? I'm using STATA version 16.
Thank you in advance!
I'm trying to implement an RDD design and am following Cattaneo et al. (2019). Following their paper,
Code:
reg y x T c.x#i.T rdrobust y x, kernel(uniform) p(1)
Code:
. reg y x T c.x#i.T Source | SS df MS Number of obs = 3,214 -------------+---------------------------------- F(3, 3210) = 1.84 Model | .440886445 3 .146962148 Prob > F = 0.1382 Residual | 256.816114 3,210 .08000502 R-squared = 0.0017 -------------+---------------------------------- Adj R-squared = 0.0008 Total | 257.257001 3,213 .080067538 Root MSE = .28285 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | .0002407 .0012055 0.20 0.842 -.002123 .0026044 T | -.0313921 .0218523 -1.44 0.151 -.074238 .0114538 | T#c.x | 1 | .0003826 .0021991 0.17 0.862 -.0039291 .0046943 | _cons | .0990177 .0135144 7.33 0.000 .0725199 .1255154 ------------------------------------------------------------------------------ . . . rdrobust y x, kernel(uniform) p(1) h(200) c(0) masspoints(adjust) Sharp RD estimates using local polynomial regression. Cutoff c = 0 | Left of c Right of c Number of obs = 3214 -------------------+---------------------- BW type = Manual Number of obs | 1955 1259 Kernel = Uniform Eff. Number of obs | 1955 1259 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 200.000 200.000 BW bias (b) | 200.000 200.000 rho (h/b) | 1.000 1.000 Outcome: y. Running variable: x. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | -.0438 .02038 -2.1488 0.032 -.083744 -.003849 Robust | - - -1.4766 0.140 -.108161 .015214 -------------------------------------------------------------------------------- sum y x T Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- y | 3,214 .0877411 .2829621 0 1 x | 3,214 -3.172993 10.0653 -19 17 T | 3,214 .372122 .4834459 0 1
Comment