Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Translog cost function estimation (sfpanel) and first derivative (margins)?

    Hello everyone,

    I am currently estimating a translog cost function from a unbalanced panel data set by using a stochastic frontier model (sfpanel command).

    Code: sfpanel lntc lnglp llnglps lnpe_a lnfe_a lnae_a c.lnglp#c.lnpe_a c.lnglp#c.lnfe_a c.lnglp#c.lnae_a c.llnpe_as#c.llnfe_as c.llnpe_as#c.llnae_as c.llnae_as#c.llnfe_as i.year, model(bc95) dist(tn)

    Where lntc is log of total cost, lnglp (log of gross loan portfolio) is my output variable and lnpe, lnfe and lnae are my input prices in log. The other variables are specified according to the formula (see attachment formula (3)) I am using e.g llnglps = 0.5*(lnglp)^2. I get (at least from my understanding good results when I run this. However in my next step I need to calculate the marginal costs for each firm, year observation in my dataset, I tried to use the margins command to calculate the first derivative of my translog cost function with respect to lnglp (my output variable) see also formula (4) in attachment.

    Code: margins, dydx(lnglp) gen(MCF)

    Now I am wondering if this is correct? Meaning if the command actually takes the derivative to each term where lnglp is involved or only to lnglp itself, as I pre specified the variables above to be called differently as e.g llnglps and I cant think of any other way to implement lnglp in general and then do the transformation in my translog cost function code directly. Would be very thankful for any help or any form of input / suggestions!

    Best regards
    Rudolf

    Attached Files

  • #2
    sfpanel is from SSC (FAQ Advice #12).

    Code: margins, dydx(lnglp) gen(MCF)

    Now I am wondering if this is correct? Meaning if the command actually takes the derivative to each term where lnglp is involved or only to lnglp itself, as I pre specified the variables above to be called differently as e.g llnglps and I cant think of any other way to implement lnglp in general and then do the transformation in my translog cost function code directly.

    No, margins has no way to know that "llnglps" is related to "lnglp", so your results would be incorrect. In any case, the marginal cost is the first derivative of the cost function with respect to quantity, as Eq. 4 in the attached picture shows. Work out the derivative and write it down, then use the -expression()- option of margins. You can then calculate the margins over observations (given that these define firm-year combinations in your panel).
    Last edited by Andrew Musau; 21 Jul 2022, 09:12.

    Comment


    • #3
      Hi Andrew,

      thank you very much for your answer and the hint with the -expression()- option of margins. I tried to implement it in my code and now it looks as follows.

      Code: margins, expression((lntc/lnglp)*(_b[lnglp]+_b[llnglps]+_b[c.lnglp#c.lnpe_a]*lnpe_a+_b[c.lnglp#c.lnfe_a]*lnfe_a+_b[c.lnglp#c.lnae_a]*lnae_a)) dydx(lnglp) gen(MCF)

      I am not 100% sure if this is correctly implemented now as I do not fully understand how the expression option of margins works. If you are familiar with it maybe you can let me know if this looks correct to you.
      Thank you!

      Comment


      • #4
        Here is an example:

        1. Model

        $$\text{price}= \beta_{0} + \beta_{1}\text{mpg} + \beta_{2}\text{mpg}^{2} +\beta_{3}\text{weight}+ \beta_{4}\text{mpg}\times\text{weight}$$

        2. Taking the derivarive w.r.t. mpg:

        $$\frac{\partial \text{price}}{\partial \text{mpg}} = \beta_1 + 2\beta_{2}\text{mpg}+ \beta_{4}\text{weight}$$

        Code:
        sysuse auto, clear
        regress price c.mpg##c.mpg c.weight c.mpg#c.weight
        gen obs=_n
        *MARGINS CALCULATION
        margins, dydx(mpg) over(obs)
        *BY HAND USING EXPRESSION
        margins, expression(_b[mpg]+ 2*_b[c.mpg#c.mpg]*mpg + _b[c.mpg#c.weight]*weight) over(obs)
        Res.:

        Code:
        . margins, dydx(mpg) over(obs)
        
        Average marginal effects                        Number of obs     =         74
        Model VCE    : OLS
        
        Expression   : Linear prediction, predict()
        dy/dx w.r.t. : mpg
        over         : obs
        
        ------------------------------------------------------------------------------
                     |            Delta-method
                     |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
        mpg          |
                 obs |
                  1  |  -201.8247   107.4765    -1.88   0.065    -416.2345    12.58509
                  2  |  -332.5317   167.1118    -1.99   0.051    -665.9106    .8471334
                  3  |  -164.3203   116.7984    -1.41   0.164    -397.3266    68.68607
                  4  |   -273.765   126.0757    -2.17   0.033    -525.2792   -22.25082
                  5  |  -457.4955   182.5663    -2.51   0.015    -821.7053   -93.28575
                  6  |  -358.6379   147.1334    -2.44   0.017     -652.161   -65.11474
                  7  |  -50.18457    87.8117    -0.57   0.570    -225.3641     124.995
                  8  |  -277.6448   125.7817    -2.21   0.031    -528.5723   -26.71722
                  9  |  -416.3524   170.6884    -2.44   0.017    -756.8664   -75.83833
                 10  |  -308.4419   136.6048    -2.26   0.027    -580.9609   -35.92287
                 11  |   -505.105   195.0107    -2.59   0.012    -894.1407   -116.0693
                 12  |   -449.495   199.1151    -2.26   0.027    -846.7187   -52.27124
                 13  |  -392.9856    169.445    -2.32   0.023    -731.0191   -54.95202
                 14  |   11.16866   88.59901     0.13   0.900    -165.5815    187.9189
                 15  |  -391.7805   173.2067    -2.26   0.027    -737.3183   -46.24264
                 16  |  -234.1561   107.3493    -2.18   0.033    -448.3122   -20.00003
                 17  |  -239.3291   108.0372    -2.22   0.030    -454.8574   -23.80092
                 18  |    -147.99   91.79161    -1.61   0.111    -331.1092    35.12926
                 19  |  -312.3217   136.3338    -2.29   0.025    -584.3002   -40.34317
                 20  |   25.15346   97.92599     0.26   0.798    -170.2035    220.5105
                 21  |  -349.5851    147.281    -2.37   0.020    -643.4027   -55.76747
                 22  |  -380.1412   175.3342    -2.17   0.034    -729.9234   -30.35894
                 23  |  -382.9687   158.8217    -2.41   0.019    -699.8094   -66.12807
                 24  |   35.98155   93.88042     0.38   0.703    -151.3048    223.2679
                 25  |  -180.8916   132.1242    -1.37   0.175    -444.4721    82.68895
                 26  |  -601.6172   222.2961    -2.71   0.009    -1045.086   -158.1486
                 27  |  -586.0981   220.7133    -2.66   0.010    -1026.409    -145.787
                 28  |  -440.4422   200.9237    -2.19   0.032     -841.274   -39.61038
                 29  |  -156.5608   119.7936    -1.31   0.196    -395.5425    82.42099
                 30  |  -470.1871   196.1553    -2.40   0.019    -861.5063   -78.86788
                 31  |  -410.9383   187.8866    -2.19   0.032    -785.7618   -36.11484
                 32  |  -319.8402   150.8035    -2.12   0.038    -620.6849   -18.99544
                 33  |  -479.2399   195.3888    -2.45   0.017    -869.0298   -89.44996
                 34  |  -219.4483   139.3446    -1.57   0.120     -497.433    58.53652
                 35  |  -363.2407   151.2261    -2.40   0.019    -664.9285   -61.55288
                 36  |  -296.8026   137.9301    -2.15   0.035    -571.9657   -21.63953
                 37  |  -295.5093   138.1242    -2.14   0.036    -571.0596    -19.9591
                 38  |  -361.2244   147.1716    -2.45   0.017    -654.8238   -67.62499
                 39  |  -304.5621   136.9616    -2.22   0.029    -577.7931   -31.33122
                 40  |  -145.4035   91.84726    -1.58   0.118    -328.6337    37.82678
                 41  |  -435.7512   170.6498    -2.55   0.013    -776.1883   -95.31408
                 42  |  -152.8338   151.7216    -1.01   0.317    -455.5101    149.8425
                 43  |   127.6499   142.1627     0.90   0.372    -155.9569    411.2566
                 44  |  -61.58286   98.68554    -0.62   0.535    -258.4551    135.2894
                 45  |    -87.689   84.05339    -1.04   0.300    -255.3709    79.99292
                 46  |  -314.6672   151.8759    -2.07   0.042    -617.6514   -11.68296
                 47  |  -362.5176   147.2041    -2.46   0.016    -656.1819    -68.8534
                 48  |  -332.7728   148.7086    -2.24   0.028    -629.4383   -36.10717
                 49  |    -283.87   140.2812    -2.02   0.047    -563.7234   -4.016691
                 50  |  -282.5768   140.5656    -2.01   0.048    -562.9975   -2.156075
                 51  |  -311.0284   136.4145    -2.28   0.026     -583.168   -38.88884
                 52  |  -140.2305   92.12985    -1.52   0.133    -324.0245    43.56357
                 53  |  -265.2824   194.2952    -1.37   0.177    -652.8907    122.3258
                 54  |  -75.32664   137.6672    -0.55   0.586    -349.9651    199.3118
                 55  |  -119.7794   86.91863    -1.38   0.173    -293.1773    53.61853
                 56  |  -114.1243   116.2523    -0.98   0.330    -346.0413    117.7927
                 57  |   114.4763   173.5277     0.66   0.512    -231.7019    460.6545
                 58  |  -87.20696   106.9888    -0.82   0.418    -300.6438    126.2299
                 59  |  -193.8242   126.9578    -1.53   0.131    -447.0981    59.44982
                 60  |  -113.6423   169.2806    -0.67   0.504    -451.3478    224.0633
                 61  |  -66.75588   96.58715    -0.69   0.492     -259.442    125.9302
                 62  |   41.15457   95.98544     0.43   0.669    -150.3311    232.6403
                 63  |   43.25905   94.29183     0.46   0.648     -144.848    231.3661
                 64  |  -387.4187   217.2454    -1.78   0.079    -820.8114    45.97399
                 65  |   1.545669   110.5922     0.01   0.989    -219.0798    222.1712
                 66  |   110.5965   175.6155     0.63   0.531    -239.7469    460.9399
                 67  |  -195.6876   205.2911    -0.95   0.344    -605.2322     213.857
                 68  |   30.08547    114.948     0.26   0.794    -199.2295    259.4005
                 69  |  -229.3123   185.7326    -1.23   0.221    -599.8388    141.2142
                 70  |  -86.96594   130.6616    -0.67   0.508    -347.6287    173.6968
                 71  |   203.5581   297.0198     0.69   0.495    -388.9801    796.0963
                 72  |  -26.66495   116.6412    -0.23   0.820    -259.3579     206.028
                 73  |  -34.42448   112.1621    -0.31   0.760    -258.1817    189.3327
                 74  |  -309.2531   174.7066    -1.77   0.081    -657.7833    39.27703
        ------------------------------------------------------------------------------
        
        .
        . *BY HAND USING EXPRESSION
        
        .
        . margins, expression(_b[mpg]+ 2*_b[c.mpg#c.mpg]*mpg + _b[c.mpg#c.weight]*weight) over(obs)
        Warning: expression() does not contain predict() or xb().
        
        Predictive margins                              Number of obs     =         74
        Model VCE    : OLS
        
        Expression   : _b[mpg]+ 2*_b[c.mpg#c.mpg]*mpg + _b[c.mpg#c.weight]*weight
        over         : obs
        
        ------------------------------------------------------------------------------
                     |            Delta-method
                     |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                 obs |
                  1  |  -201.8247   107.4765    -1.88   0.060    -412.4748    8.825407
                  2  |  -332.5317   167.1118    -1.99   0.047    -660.0648   -4.998676
                  3  |  -164.3203   116.7984    -1.41   0.159    -393.2409    64.60029
                  4  |   -273.765   126.0757    -2.17   0.030    -520.8689   -26.66113
                  5  |  -457.4955   182.5663    -2.51   0.012    -815.3189   -99.67218
                  6  |  -358.6379   147.1334    -2.44   0.015    -647.0141   -70.26167
                  7  |  -50.18457    87.8117    -0.57   0.568    -222.2924    121.9232
                  8  |  -277.6448   125.7817    -2.21   0.027    -524.1723   -31.11725
                  9  |  -416.3524   170.6884    -2.44   0.015    -750.8955   -81.80925
                 10  |  -308.4419   136.6048    -2.26   0.024    -576.1823    -40.7015
                 11  |   -505.105   195.0107    -2.59   0.010     -887.319    -122.891
                 12  |   -449.495   199.1151    -2.26   0.024    -839.7534   -59.23657
                 13  |  -392.9856    169.445    -2.32   0.020    -725.0917   -60.87945
                 14  |   11.16866     88.599     0.13   0.900    -162.4822    184.8195
                 15  |  -391.7805   173.2067    -2.26   0.024    -731.2593   -52.30166
                 16  |  -234.1561   107.3493    -2.18   0.029     -444.557   -23.75526
                 17  |  -239.3291   108.0372    -2.22   0.027    -451.0781   -27.58021
                 18  |    -147.99   91.79161    -1.61   0.107    -327.8982    31.91826
                 19  |  -312.3217   136.3338    -2.29   0.022     -579.531   -45.11232
                 20  |   25.15346   97.92599     0.26   0.797     -166.778    217.0849
                 21  |  -349.5851    147.281    -2.37   0.018    -638.2506   -60.91958
                 22  |  -380.1412   175.3342    -2.17   0.030      -723.79   -36.49238
                 23  |  -382.9687   158.8217    -2.41   0.016    -694.2536   -71.68388
                 24  |   35.98155   93.88042     0.38   0.702    -148.0207    219.9838
                 25  |  -180.8916   132.1242    -1.37   0.171    -439.8503    78.06706
                 26  |  -601.6172   222.2961    -2.71   0.007     -1037.31   -165.9248
                 27  |  -586.0981   220.7133    -2.66   0.008    -1018.688   -153.5079
                 28  |  -440.4422   200.9237    -2.19   0.028    -834.2454   -46.63898
                 29  |  -156.5608   119.7936    -1.31   0.191    -391.3519    78.23043
                 30  |  -470.1871   196.1553    -2.40   0.017    -854.6445   -85.72967
                 31  |  -410.9383   187.8866    -2.19   0.029    -779.1893   -42.68738
                 32  |  -319.8402   150.8035    -2.12   0.034    -615.4096   -24.27076
                 33  |  -479.2399   195.3888    -2.45   0.014    -862.1948   -96.28494
                 34  |  -219.4483   139.3446    -1.57   0.115    -492.5586    53.66205
                 35  |  -363.2407   151.2261    -2.40   0.016    -659.6384   -66.84299
                 36  |  -296.8026   137.9301    -2.15   0.031    -567.1407   -26.46452
                 37  |  -295.5093   138.1242    -2.14   0.032    -566.2278   -24.79088
                 38  |  -361.2244   147.1716    -2.45   0.014    -649.6755   -72.77327
                 39  |  -304.5621   136.9616    -2.22   0.026    -573.0019   -36.12233
                 40  |  -145.4035   91.84726    -1.58   0.113    -325.4208    34.61383
                 41  |  -435.7512   170.6498    -2.55   0.011    -770.2187   -101.2837
                 42  |  -152.8338   151.7216    -1.01   0.314    -450.2027     144.535
                 43  |   127.6499   142.1627     0.90   0.369    -150.9838    406.2836
                 44  |  -61.58286   98.68554    -0.62   0.533     -255.003    131.8372
                 45  |    -87.689   84.05339    -1.04   0.297    -252.4306    77.05261
                 46  |  -314.6672   151.8759    -2.07   0.038    -612.3385   -16.99579
                 47  |  -362.5176   147.2041    -2.46   0.014    -651.0325   -74.00281
                 48  |  -332.7728   148.7086    -2.24   0.025    -624.2363   -41.30921
                 49  |    -283.87   140.2812    -2.02   0.043    -558.8162   -8.923928
                 50  |  -282.5768   140.5656    -2.01   0.044    -558.0803   -7.073261
                 51  |  -311.0284   136.4145    -2.28   0.023     -578.396   -43.66082
                 52  |  -140.2305   92.12985    -1.52   0.128    -320.8016    40.34073
                 53  |  -265.2824   194.2952    -1.37   0.172    -646.0939    115.5291
                 54  |  -75.32664   137.6672    -0.55   0.584    -345.1493     194.496
                 55  |  -119.7794   86.91863    -1.38   0.168    -290.1368      50.578
                 56  |  -114.1243   116.2523    -0.98   0.326    -341.9746     113.726
                 57  |   114.4763   173.5277     0.66   0.509    -225.6317    454.5842
                 58  |  -87.20696   106.9888    -0.82   0.415    -296.9012    122.4873
                 59  |  -193.8242   126.9578    -1.53   0.127     -442.657    55.00865
                 60  |  -113.6423   169.2806    -0.67   0.502    -445.4261    218.1416
                 61  |  -66.75588   96.58716    -0.69   0.489    -256.0632    122.5515
                 62  |   41.15457   95.98544     0.43   0.668    -146.9734    229.2826
                 63  |   43.25905   94.29183     0.46   0.646    -141.5495    228.0676
                 64  |  -387.4187   217.2454    -1.78   0.075    -813.2118    38.37444
                 65  |   1.545669   110.5921     0.01   0.989    -215.2109    218.3022
                 66  |   110.5965   175.6155     0.63   0.529    -233.6036    454.7967
                 67  |  -195.6876   205.2911    -0.95   0.340    -598.0508    206.6756
                 68  |   30.08547    114.948     0.26   0.794    -195.2085    255.3794
                 69  |  -229.3123   185.7326    -1.23   0.217    -593.3416     134.717
                 70  |  -86.96594   130.6616    -0.67   0.506     -343.058    169.1261
                 71  |   203.5581   297.0197     0.69   0.493    -378.5899    785.7061
                 72  |  -26.66495   116.6412    -0.23   0.819    -255.2776    201.9477
                 73  |  -34.42448   112.1621    -0.31   0.759    -254.2581    185.4091
                 74  |  -309.2531   174.7066    -1.77   0.077    -651.6718    33.16554
        ------------------------------------------------------------------------------
        Last edited by Andrew Musau; 21 Jul 2022, 11:10.

        Comment


        • #5
          Hi Andrew,

          thank you very much that was very helpful!

          Comment


          • #6
            Hi Andrew, do you have a suggestion for exporting the results of your margins command with the expression() option (e.g. using esttab)?

            Comment


            • #7
              estout (esttab) is from SSC.

              Code:
              sysuse auto, clear
              regress price c.mpg##c.mpg c.weight c.mpg#c.weight
              gen obs_no=_n
              margins, expression(_b[mpg]+ 2*_b[c.mpg#c.mpg]*mpg + _b[c.mpg#c.weight]*weight) over(obs_no) post
              mat toexport= r(table)[1..6, 1...]'
              esttab mat(toexport), nomtitle
              Res.:

              Code:
              . esttab mat(toexport), nomtitle
              
              ------------------------------------------------------------------------------------------
                                      b           se            z       pvalue           ll           ul
              ------------------------------------------------------------------------------------------
              1.obs_no        -201.8247     107.4765    -1.877849     .0604018    -412.4748     8.825407
              2.obs_no        -332.5317     167.1118    -1.989876     .0466046    -660.0648    -4.998676
              3.obs_no        -164.3203     116.7984    -1.406872     .1594655    -393.2409     64.60029
              4.obs_no         -273.765     126.0757    -2.171433     .0298984    -520.8689    -26.66113
              5.obs_no        -457.4955     182.5663    -2.505915     .0122135    -815.3189    -99.67218
              6.obs_no        -358.6379     147.1334    -2.437501     .0147892    -647.0141    -70.26167
              7.obs_no        -50.18457      87.8117    -.5715021     .5676594    -222.2924     121.9232
              8.obs_no        -277.6448     125.7817    -2.207355     .0272893    -524.1723    -31.11725
              9.obs_no        -416.3524     170.6884    -2.439254     .0147176    -750.8955    -81.80925
              10.obs_no       -308.4419     136.6048    -2.257915      .023951    -576.1823     -40.7015
              11.obs_no        -505.105     195.0107     -2.59014     .0095937     -887.319     -122.891
              12.obs_no        -449.495     199.1151    -2.257463     .0239791    -839.7534    -59.23657
              13.obs_no       -392.9856      169.445    -2.319251     .0203814    -725.0917    -60.87945
              14.obs_no        11.16866       88.599     .1260586     .8996856    -162.4822     184.8195
              15.obs_no       -391.7805     173.2067    -2.261925      .023702    -731.2593    -52.30166
              16.obs_no       -234.1561     107.3493    -2.181253     .0291647     -444.557    -23.75526
              17.obs_no       -239.3291     108.0372    -2.215249      .026743    -451.0781    -27.58021
              18.obs_no         -147.99     91.79161    -1.612239       .10691    -327.8982     31.91826
              19.obs_no       -312.3217     136.3338     -2.29086     .0219715     -579.531    -45.11232
              20.obs_no        25.15346     97.92599      .256862     .7972853     -166.778     217.0849
              21.obs_no       -349.5851      147.281    -2.373592      .017616    -638.2506    -60.91958
              22.obs_no       -380.1412     175.3342    -2.168094     .0301515      -723.79    -36.49238
              23.obs_no       -382.9687     158.8217    -2.411312     .0158952    -694.2536    -71.68388
              24.obs_no        35.98155     93.88042       .38327     .7015196    -148.0207     219.9838
              25.obs_no       -180.8916     132.1242    -1.369103     .1709671    -439.8503     78.06706
              26.obs_no       -601.6172     222.2961    -2.706377     .0068022     -1037.31    -165.9248
              27.obs_no       -586.0981     220.7133    -2.655472     .0079197    -1018.688    -153.5079
              28.obs_no       -440.4422     200.9237    -2.192087     .0283732    -834.2454    -46.63898
              29.obs_no       -156.5608     119.7936    -1.306921     .1912397    -391.3519     78.23043
              30.obs_no       -470.1871     196.1553    -2.397014     .0165293    -854.6445    -85.72967
              31.obs_no       -410.9383     187.8866    -2.187162     .0287307    -779.1893    -42.68738
              32.obs_no       -319.8402     150.8035    -2.120907     .0339296    -615.4096    -24.27076
              33.obs_no       -479.2399     195.3888     -2.45275     .0141769    -862.1948    -96.28494
              34.obs_no       -219.4483     139.3446    -1.574861     .1152886    -492.5586     53.66205
              35.obs_no       -363.2407     151.2261    -2.401971      .016307    -659.6384    -66.84299
              36.obs_no       -296.8026     137.9301    -2.151833     .0314105    -567.1407    -26.46452
              37.obs_no       -295.5093     138.1242    -2.139446     .0323995    -566.2278    -24.79088
              38.obs_no       -361.2244     147.1716    -2.454443     .0141103    -649.6755    -72.77327
              39.obs_no       -304.5621     136.9616    -2.223705     .0261683    -573.0019    -36.12233
              40.obs_no       -145.4035     91.84726    -1.583101     .1133984    -325.4208     34.61383
              41.obs_no       -435.7512     170.6498    -2.553481     .0106652    -770.2187    -101.2837
              42.obs_no       -152.8338     151.7216    -1.007331     .3137758    -450.2027      144.535
              43.obs_no        127.6499     142.1627     .8979142     .3692313    -150.9838     406.2836
              44.obs_no       -61.58286     98.68554    -.6240312     .5326071     -255.003     131.8372
              45.obs_no         -87.689     84.05339    -1.043254     .2968309    -252.4306     77.05261
              46.obs_no       -314.6672     151.8759     -2.07187     .0382776    -612.3385    -16.99579
              47.obs_no       -362.5176     147.2041    -2.462686     .0137901    -651.0325    -74.00281
              48.obs_no       -332.7728     148.7086     -2.23775     .0252373    -624.2363    -41.30921
              49.obs_no         -283.87     140.2812    -2.023579     .0430135    -558.8162    -8.923928
              50.obs_no       -282.5768     140.5656    -2.010284     .0444011    -558.0803    -7.073261
              51.obs_no       -311.0284     136.4145    -2.280024     .0226063     -578.396    -43.66082
              52.obs_no       -140.2305     92.12985    -1.522096     .1279851    -320.8016     40.34073
              53.obs_no       -265.2824     194.2952    -1.365358     .1721406    -646.0939     115.5291
              54.obs_no       -75.32664     137.6672    -.5471649     .5842654    -345.1493      194.496
              55.obs_no       -119.7794     86.91863    -1.378063     .1681837    -290.1368       50.578
              56.obs_no       -114.1243     116.2523    -.9816952       .32625    -341.9746      113.726
              57.obs_no        114.4763     173.5277     .6597006      .509446    -225.6317     454.5842
              58.obs_no       -87.20696     106.9888    -.8151035     .4150131    -296.9012     122.4873
              59.obs_no       -193.8242     126.9578    -1.526681     .1268403     -442.657     55.00865
              60.obs_no       -113.6423     169.2806    -.6713249     .5020135    -445.4261     218.1416
              61.obs_no       -66.75588     96.58716    -.6911466     .4894734    -256.0632     122.5515
              62.obs_no        41.15457     95.98544     .4287585      .668099    -146.9734     229.2826
              63.obs_no        43.25905     94.29183     .4587783     .6463934    -141.5495     228.0676
              64.obs_no       -387.4187     217.2454    -1.783323     .0745337    -813.2118     38.37444
              65.obs_no        1.545669     110.5921     .0139763     .9888489    -215.2109     218.3022
              66.obs_no        110.5965     175.6155      .629765     .5288483    -233.6036     454.7967
              67.obs_no       -195.6876     205.2911    -.9532201     .3404786    -598.0508     206.6756
              68.obs_no        30.08547      114.948     .2617311     .7935288    -195.2085     255.3794
              69.obs_no       -229.3123     185.7326    -1.234636     .2169659    -593.3416      134.717
              70.obs_no       -86.96594     130.6616    -.6655815     .5056787     -343.058     169.1261
              71.obs_no        203.5581     297.0197     .6853353     .4931324    -378.5899     785.7061
              72.obs_no       -26.66495     116.6412    -.2286065     .8191748    -255.2776     201.9477
              73.obs_no       -34.42448     112.1621    -.3069173     .7589063    -254.2581     185.4091
              74.obs_no       -309.2531     174.7066    -1.770128     .0767058    -651.6718     33.16554
              ------------------------------------------------------------------------------------------
              
              .

              Comment

              Working...
              X