Hello Everyone,
I would like to ask some expert in Xtabond2. I have a model that consist of this:
Variable Dependent and Predetermined: Human Capital Expenditure
Variabel Independent and Exogenous: Lag demonstration per capita
Variable demonstration per capita was in lag because it will affect the human capital expenditure in the next period
Hereby my command Xtabond2 with two-step robust and orthogonal
Hereby the result
I was wondering whether I perform the syntax for Xtabond2 right?
Thank you very much.
I would like to ask some expert in Xtabond2. I have a model that consist of this:
Variable Dependent and Predetermined: Human Capital Expenditure
Variabel Independent and Exogenous: Lag demonstration per capita
Variable demonstration per capita was in lag because it will affect the human capital expenditure in the next period
Hereby my command Xtabond2 with two-step robust and orthogonal
Code:
xtabond2 ln_humancapital_pcpt l.ln_humancapital_pcpt l.totaldemonlabour_governance l.totaldemonstudent_governance l.totaldemonpeople_governance ln_gdppcpt ln_ratiomanugdp10 i.year, gmmstyle(L.(ln_humancapital_pcpt), equation(diff) laglimits(1 .) collapse) gmmstyle(L.(ln_humancapital_pcpt), equation(level) laglimits(1 1)) gmmstyle(L.(totaldemonlabour_governance totaldemonstudent_governance totaldemonpeople_governance), equation(diff) laglimits(1 .) collapse) gmmstyle(L.(totaldemonlabour_governance totaldemonstudent_governance totaldemonpeople_governance), equation(level) laglimits(1 1)) ivstyle(i.year, equation(level)) robust twostep small orthogonal
Code:
xtabond2 ln_humancapital_pcpt l.ln_humancapital_pcpt l.totaldemonlabour_governance l.totaldemonstu > dent_governance l.totaldemonpeople_governance ln_gdppcpt ln_ratiomanugdp10 i.year, gmmstyle(L.(ln_ > humancapital_pcpt), equation(diff) laglimits(1 .) collapse) gmmstyle(L.(ln_humancapital_pcpt), equ > ation(level) laglimits(0 0) collapse) gmmstyle(L.(totaldemonlabour_governance totaldemonstudent_go > vernance totaldemonpeople_governance), equation(diff) laglimits(1 .) collapse) gmmstyle(L.(totalde > monlabour_governance totaldemonstudent_governance totaldemonpeople_governance), equation(level) la > glimits(0 0) collapse) ivstyle(i.year, equation(level)) robust twostep small orthogonal Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. 2006b.year dropped due to collinearity 2009.year dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: bps_2009 Number of obs = 2287 Time variable : year Number of groups = 378 Number of instruments = 39 Obs per group: min = 1 F(13, 377) = 30263.64 avg = 6.05 Prob > F = 0.000 max = 8 ---------------------------------------------------------------------------------------------- | Corrected ln_humancapital_pcpt | Coefficient std. err. t P>|t| [95% conf. interval] -----------------------------+---------------------------------------------------------------- ln_humancapital_pcpt | L1. | .116792 .0632612 1.85 0.066 -.0075971 .2411811 | totaldemonlabour_governance | L1. | -.0711599 .0961021 -0.74 0.459 -.2601232 .1178033 | totaldemonstudent_governance | L1. | -.0078265 .0221416 -0.35 0.724 -.051363 .03571 | totaldemonpeople_governance | L1. | -.0302341 .0402158 -0.75 0.453 -.1093095 .0488413 | ln_gdppcpt | .3884126 .264069 1.47 0.142 -.1308199 .9076452 ln_ratiomanugdp10 | -.4803554 .1529133 -3.14 0.002 -.7810253 -.1796856 | year | 2007 | -.3207633 .0490133 -6.54 0.000 -.4171371 -.2243895 2008 | -.1513371 .0221617 -6.83 0.000 -.1949132 -.1077611 2010 | .0001135 .0203818 0.01 0.996 -.0399627 .0401897 2011 | .1900164 .0236246 8.04 0.000 .143564 .2364689 2012 | .2231411 .0363974 6.13 0.000 .1515738 .2947085 2013 | .2940117 .0579161 5.08 0.000 .1801325 .4078908 2014 | .4031246 .0692231 5.82 0.000 .2670128 .5392364 | _cons | 9.693363 1.2348 7.85 0.000 7.265405 12.12132 ---------------------------------------------------------------------------------------------- Instruments for orthogonal deviations equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/8).(L.totaldemonlabour_governance L.totaldemonstudent_governance L.totaldemonpeople_governance) collapsed L(1/8).L.ln_humancapital_pcpt collapsed Instruments for levels equation Standard 2006b.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.totaldemonlabour_governance L.totaldemonstudent_governance L.totaldemonpeople_governance) collapsed D.L.ln_humancapital_pcpt collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -2.56 Pr > z = 0.010 Arellano-Bond test for AR(2) in first differences: z = -0.54 Pr > z = 0.591 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(25) = 37.71 Prob > chi2 = 0.049 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(25) = 15.99 Prob > chi2 = 0.915 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(21) = 14.20 Prob > chi2 = 0.861 Difference (null H = exogenous): chi2(4) = 1.78 Prob > chi2 = 0.775 gmm(L.ln_humancapital_pcpt, collapse eq(diff) lag(1 .)) Hansen test excluding group: chi2(18) = 10.47 Prob > chi2 = 0.916 Difference (null H = exogenous): chi2(7) = 5.52 Prob > chi2 = 0.596 gmm(L.ln_humancapital_pcpt, collapse eq(level) lag(0 0)) Hansen test excluding group: chi2(24) = 15.79 Prob > chi2 = 0.896 Difference (null H = exogenous): chi2(1) = 0.20 Prob > chi2 = 0.653 gmm(L.totaldemonlabour_governance L.totaldemonstudent_governance L.totaldemonpeople_governance, co > llapse eq(diff) lag(1 .)) Hansen test excluding group: chi2(5) = 6.24 Prob > chi2 = 0.283 Difference (null H = exogenous): chi2(20) = 9.74 Prob > chi2 = 0.973 gmm(L.totaldemonlabour_governance L.totaldemonstudent_governance L.totaldemonpeople_governance, co > llapse eq(level) lag(0 0)) Hansen test excluding group: chi2(22) = 14.94 Prob > chi2 = 0.865 Difference (null H = exogenous): chi2(3) = 1.05 Prob > chi2 = 0.790 iv(2006b.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year, eq( > level)) Hansen test excluding group: chi2(18) = 8.64 Prob > chi2 = 0.967 Difference (null H = exogenous): chi2(7) = 7.34 Prob > chi2 = 0.394
Thank you very much.
Comment