Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Thanks a lot Joseph Coveney.

    After doing this, how to produce the forest plot in which, in addition to the effect size of the individual studies with the new IC, the over all one is seen? tHANKS A LOT!!!!



    Comment


    • #17
      I don't do forest plots, sorry. It doesn't look too overwhelming, though: you might take a look through the graphing code sections of some of the user-written meta-analysis packages in order to get some pointers on how to do it.

      Keep in mind that those packages are typically for meta-analysis of randomized controlled trials in which, say, odds ratio is the effect measure for each study. In your case, you don't have that, and so I'm guessing that you'll want to plot the odds for each study (and confidence interval) rather than prevalence (and its back-transformed interval).

      Comment


      • #18
        yes..Thanks the same

        Comment


        • #19
          As suggested in #12, you can also proceed with -metan- if you prefer a meta-analysis package, which will also give you a forest plot.

          Code:
          metan pos tot , proportion transf(logi)
          Partial output:

          Code:
          . metan pos tot , proportion transf(logit)
          
          Studies included: 17
          Participants included: 33182
          
          Meta-analysis pooling of Logit-transformed Proportions
          using the common-effect inverse-variance model
          
          --------------------------------------------------------------------
          Study                | Proportion  [95% Conf. Interval]   % Weight
          ---------------------+----------------------------------------------
          1                    |     0.032      0.013     0.079       2.45
          2                    |     0.087      0.034     0.203       2.31
          3                    |     0.015      0.007     0.035       3.12
          4                    |     0.012      0.002     0.067       0.63
          5                    |     0.029      0.005     0.149       0.61
          6                    |     0.006      0.001     0.031       0.63
          7                    |     0.005      0.001     0.030       0.63
          8                    |     0.063      0.021     0.168       1.78
          9                    |     0.002      0.001     0.005       3.16
          10                   |     0.018      0.007     0.045       2.49
          11                   |     0.013      0.002     0.068       0.63
          12                   |     0.003      0.002     0.005      19.56
          13                   |     0.014      0.011     0.017      44.97
          14                   |     0.002      0.001     0.003      13.90
          15                   |     0.022      0.006     0.076       1.24
          16                   |     0.001      0.000     0.003       1.27
          17                   |     0.005      0.001     0.029       0.63
          ---------------------+----------------------------------------------
          Overall, IV          |     0.008      0.007     0.009     100.00
          --------------------------------------------------------------------

          Comment


          • #20
            thank you

            Comment


            • #21
              Thanks Leonardo Guizzetti I run the instruction but it gives me errorr and says to me "option proportion not allowed". I use STATA 16..


              What can I do??

              Comment


              • #22
                Originally posted by Tom Salvitti View Post
                I run the instruction but it gives me errorr and says to me "option proportion not allowed". I use STATA 16..
                Works for me.

                .ÿ
                .ÿversionÿ17.0

                .ÿ
                .ÿclearÿ*

                .ÿ
                .ÿlocalÿdirÿhttp://fmwww.bc.edu/repec/bocode/

                .ÿ
                .ÿ#delimitÿ;
                delimiterÿnowÿ;
                .ÿlocalÿfile_listÿ
                >ÿÿÿÿÿÿÿmetan.ado
                >ÿÿÿÿÿÿÿmetan.mata
                >ÿÿÿÿÿÿÿmetan.sthlp
                >ÿÿÿÿÿÿÿmetan_binary.sthlp
                >ÿÿÿÿÿÿÿmetan_continuous.sthlp
                >ÿÿÿÿÿÿÿmetan_model.sthlp
                >ÿÿÿÿÿÿÿmetan_pooling.ado
                >ÿÿÿÿÿÿÿmetan_proportion.sthlp
                >ÿÿÿÿÿÿÿmetan_hlp_run.ado
                >ÿÿÿÿÿÿÿmetani.ado
                >ÿÿÿÿÿÿÿmetani.sthlp
                >ÿÿÿÿÿÿÿmetannt.ado
                >ÿÿÿÿÿÿÿmetannt.sthlp
                >ÿÿÿÿÿÿÿforestplot.ado
                >ÿÿÿÿÿÿÿforestplot.sthlp
                >ÿÿÿÿÿÿÿlabbe.ado
                >ÿÿÿÿÿÿÿlabbe.sthlp
                >ÿÿÿÿÿÿÿlmetan.mlib;

                .ÿ#delimitÿcr
                delimiterÿnowÿcr
                .ÿ
                .ÿforeachÿfileÿofÿlocalÿfile_listÿ{
                ÿÿ2.ÿÿÿÿÿÿÿÿÿlocalÿsubdirÿ=ÿsubstr("`file'",ÿ1,ÿ1)
                ÿÿ3.ÿÿÿÿÿÿÿÿÿcopyÿ"`dir'`subdir'/`file'"ÿ`c(pwd)'/`file',ÿreplace
                ÿÿ4.ÿ}

                .ÿ
                .ÿquietlyÿinputÿbyteÿsidÿintÿtotÿbyteÿpos

                .ÿ
                .ÿmelogitÿposÿ||ÿsid:ÿ,ÿbinomial(tot)ÿnolog

                Mixed-effectsÿlogisticÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿÿÿÿ17
                Binomialÿvariable:ÿtot
                Groupÿvariable:ÿsidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿÿ17

                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿÿ1
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿÿ1.0
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿÿ1

                Integrationÿmethod:ÿmvaghermiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿIntegrationÿpts.ÿÿ=ÿÿÿÿÿÿÿÿÿÿ7

                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(0)ÿÿÿÿÿÿ=ÿÿÿÿÿÿÿÿÿÿ.
                Logÿlikelihoodÿ=ÿ-49.337124ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿÿÿÿÿÿ.
                ------------------------------------------------------------------------------
                ÿÿÿÿÿÿÿÿÿposÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
                -------------+----------------------------------------------------------------
                ÿÿÿÿÿÿÿ_consÿ|ÿÿ-4.770905ÿÿÿ.3262176ÿÿÿ-14.62ÿÿÿ0.000ÿÿÿÿ-5.410279ÿÿÿÿ-4.13153
                -------------+----------------------------------------------------------------
                sidÿÿÿÿÿÿÿÿÿÿ|
                ÿÿÿvar(_cons)|ÿÿÿ1.350316ÿÿÿ.5867997ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.5761466ÿÿÿÿ3.164736
                ------------------------------------------------------------------------------
                LRÿtestÿvs.ÿlogisticÿmodel:ÿchibar2(01)ÿ=ÿ114.15ÿÿÿÿÿÿProbÿ>=ÿchibar2ÿ=ÿ0.0000

                .ÿnlcomÿoverall:ÿinvlogit(_b[_cons]),ÿnoheader

                ------------------------------------------------------------------------------
                ÿÿÿÿÿÿÿÿÿposÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
                -------------+----------------------------------------------------------------
                ÿÿÿÿÿoverallÿ|ÿÿÿ.0084015ÿÿÿ.0027177ÿÿÿÿÿ3.09ÿÿÿ0.002ÿÿÿÿÿ.0030749ÿÿÿÿ.0137281
                ------------------------------------------------------------------------------

                .ÿ
                .ÿmetanÿposÿtotÿ,ÿproportionÿtransf(logit)

                Studiesÿincluded:ÿ17
                Participantsÿincluded:ÿ33182

                Meta-analysisÿpoolingÿofÿLogit-transformedÿProportions
                usingÿtheÿcommon-effectÿinverse-varianceÿmodel

                --------------------------------------------------------------------
                Studyÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿProportionÿÿ[95%ÿConf.ÿInterval]ÿÿÿ%ÿWeight
                ---------------------+----------------------------------------------
                1ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.032ÿÿÿÿÿÿ0.013ÿÿÿÿÿ0.079ÿÿÿÿÿÿÿ2.45
                2ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.087ÿÿÿÿÿÿ0.034ÿÿÿÿÿ0.203ÿÿÿÿÿÿÿ2.31
                3ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.015ÿÿÿÿÿÿ0.007ÿÿÿÿÿ0.035ÿÿÿÿÿÿÿ3.12
                4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.012ÿÿÿÿÿÿ0.002ÿÿÿÿÿ0.067ÿÿÿÿÿÿÿ0.63
                5ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.029ÿÿÿÿÿÿ0.005ÿÿÿÿÿ0.149ÿÿÿÿÿÿÿ0.61
                6ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.006ÿÿÿÿÿÿ0.001ÿÿÿÿÿ0.031ÿÿÿÿÿÿÿ0.63
                7ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.005ÿÿÿÿÿÿ0.001ÿÿÿÿÿ0.030ÿÿÿÿÿÿÿ0.63
                8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.063ÿÿÿÿÿÿ0.021ÿÿÿÿÿ0.168ÿÿÿÿÿÿÿ1.78
                9ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.002ÿÿÿÿÿÿ0.001ÿÿÿÿÿ0.005ÿÿÿÿÿÿÿ3.16
                10ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.018ÿÿÿÿÿÿ0.007ÿÿÿÿÿ0.045ÿÿÿÿÿÿÿ2.49
                11ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.013ÿÿÿÿÿÿ0.002ÿÿÿÿÿ0.068ÿÿÿÿÿÿÿ0.63
                12ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.003ÿÿÿÿÿÿ0.002ÿÿÿÿÿ0.005ÿÿÿÿÿÿ19.56
                13ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.014ÿÿÿÿÿÿ0.011ÿÿÿÿÿ0.017ÿÿÿÿÿÿ44.97
                14ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.002ÿÿÿÿÿÿ0.001ÿÿÿÿÿ0.003ÿÿÿÿÿÿ13.90
                15ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.022ÿÿÿÿÿÿ0.006ÿÿÿÿÿ0.076ÿÿÿÿÿÿÿ1.24
                16ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.001ÿÿÿÿÿÿ0.000ÿÿÿÿÿ0.003ÿÿÿÿÿÿÿ1.27
                17ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.005ÿÿÿÿÿÿ0.001ÿÿÿÿÿ0.029ÿÿÿÿÿÿÿ0.63
                ---------------------+----------------------------------------------
                Overall,ÿIVÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ0.008ÿÿÿÿÿÿ0.007ÿÿÿÿÿ0.009ÿÿÿÿÿ100.00
                --------------------------------------------------------------------

                Testÿofÿoverallÿeffectÿ=ÿ0:ÿÿzÿ=ÿ-60.810ÿÿpÿ=ÿ0.000


                Heterogeneityÿmeasures,ÿcalculatedÿfromÿtheÿdata
                withÿConf.ÿIntervalsÿbasedÿonÿnon-centralÿchi²ÿ(common-effect)ÿdistributionÿforÿQ
                ---------------------------------------------------------
                Measureÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿValueÿÿÿÿÿÿdfÿÿÿÿÿÿp-value
                ---------------------+-----------------------------------
                Cochran'sÿQÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿ164.96ÿÿÿÿÿÿÿ16ÿÿÿÿÿÿ0.000
                ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿ-[95%ÿConf.ÿInterval]-
                Hÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ3.211ÿÿÿÿÿ2.724ÿÿÿÿÿ3.681
                ÿ(%)ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿ90.3%ÿÿÿÿÿ86.5%ÿÿÿÿÿ92.6%
                ---------------------------------------------------------
                Hÿ=ÿrelativeÿexcessÿinÿCochran'sÿQÿoverÿitsÿdegrees-of-freedom
                ÿ=ÿproportionÿofÿtotalÿvariationÿinÿeffectÿestimateÿdueÿtoÿbetween-studyÿheterogeneityÿ(basedÿonÿQ)

                .ÿquietlyÿgraphÿexportÿforest.png,ÿreplace

                .ÿ
                .ÿexit

                endÿofÿdo-file


                .


                What can I do??
                Maybe you didn't install the correct meta-analysis user-written command?


                Click image for larger version

Name:	forest.png
Views:	1
Size:	27.1 KB
ID:	1669457


                Again, if you're going to stick with this kind of graph, then I recommend trying to tweak it to plot odds instead.

                Comment


                • #23
                  I posted a working example (as it commonplace here by also showing the output) so I agree with Joseph that you likely need to install (or update) -metan-.

                  This is the version I was using, and I seem to recall David adding the -proportion- in a more recent version.

                  Code:
                  . which metan
                  c:\ado17\plus\m\metan.ado
                  *! version 4.05  29nov2021
                  *! Current version by David Fisher
                  *! Previous versions by Ross Harris and Michael Bradburn
                  Last edited by Leonardo Guizzetti; 16 Jun 2022, 06:55.

                  Comment

                  Working...
                  X