Hi,
I want to run a regression in which the dependent variable is average growth rate of value added per worker and the independent variable is the log of value added per worker at an initial point (dataex is below). The data is an unbalanced panel across countries contemplating country, industry (isic), and year. Initially, I calculated the average annual growth rates for my years following Nick Cox's application of conditional and later I've calculated the average annual growth rate)
My question is how to do to these regressions by period (so I can include more countries rather than just some by doing the regressions with specific years). For instance,
Growth of rate of value added per worker (from 1975-1980)= Initial Value added per worker (1975-1980)
So far, what I've been doing is
(average annual growth)
------------------------------------------------------------------------------
How can I run these type of regressions on five year periods? (I tried creating a period=5*floor(year/5) and collapsed all variables by period but I am sure that's not the right approach given that variables don't smooth as necessary)
Thank you!
I want to run a regression in which the dependent variable is average growth rate of value added per worker and the independent variable is the log of value added per worker at an initial point (dataex is below). The data is an unbalanced panel across countries contemplating country, industry (isic), and year. Initially, I calculated the average annual growth rates for my years following Nick Cox's application of conditional and later I've calculated the average annual growth rate)
My question is how to do to these regressions by period (so I can include more countries rather than just some by doing the regressions with specific years). For instance,
Growth of rate of value added per worker (from 1975-1980)= Initial Value added per worker (1975-1980)
So far, what I've been doing is
Code:
bysort country isic: egen ln_1980= mean (cond(year==1980, ln(val_per_worker,.))
Code:
bysort country isic: egen ln_2019= mean (cond(year==2019, ln(val_per_worker,.))
Code:
gen av_ann_growth= (ln_2019-ln_1980)/abs(2019-1980)
Code:
reg av_ann_growth ln_1980 i.country i.isic1 i.year, robust Linear regression Number of obs = 29,888 F(114, 29773) = 3670.92 Prob > F = 0.0000 R-squared = 0.5659 Root MSE = .01079 ------------------------------------------------------------------------------ | Robust av_ann_gro~h | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ln_1980 | -.0145573 .000287 -50.72 0.000 -.0151198 -.0139948 | country | 40 | .0053123 .0002472 21.49 0.000 .0048277 .0057969 56 | .0030002 .0003452 8.69 0.000 .0023235 .0036768 124 | .0058293 .0002624 22.21 0.000 .0053149 .0063437 144 | -.0194746 .0009778 -19.92 0.000 -.0213911 -.0175581 152 | -.0146902 .0005757 -25.52 0.000 -.0158186 -.0135619 170 | -.0149132 .0003762 -39.64 0.000 -.0156506 -.0141758 196 | -.0143605 .0004269 -33.64 0.000 -.0151973 -.0135238 208 | .004522 .0003898 11.60 0.000 .003758 .005286 218 | -.0158834 .0003904 -40.69 0.000 -.0166485 -.0151182 242 | -.0234721 .0005679 -41.33 0.000 -.0245852 -.0223591 246 | .001825 .0003055 5.97 0.000 .0012262 .0024239 250 | -.0023131 .0002553 -9.06 0.000 -.0028135 -.0018128 300 | -.0164003 .0003919 -41.84 0.000 -.0171686 -.0156321 344 | -.005519 .0011802 -4.68 0.000 -.0078323 -.0032058 348 | -.0126267 .0004931 -25.61 0.000 -.0135932 -.0116602 352 | -.0011192 .0005864 -1.91 0.056 -.0022686 .0000303 356 | -.0223825 .0007734 -28.94 0.000 -.0238985 -.0208665 360 | -.0057511 .0007827 -7.35 0.000 -.0072852 -.0042169 376 | -.0043756 .0003132 -13.97 0.000 -.0049895 -.0037617 380 | -.0041305 .0003348 -12.34 0.000 -.0047867 -.0034742 404 | -.0172134 .0010836 -15.89 0.000 -.0193373 -.0150895 410 | .0222026 .0003879 57.24 0.000 .0214423 .0229629 458 | -.0139197 .0006056 -22.98 0.000 -.0151067 -.0127327 470 | -.006881 .0003948 -17.43 0.000 -.0076549 -.0061072 480 | -.0164284 .0008748 -18.78 0.000 -.0181432 -.0147137 504 | -.0279229 .0013635 -20.48 0.000 -.0305954 -.0252505 528 | .0031918 .0003032 10.53 0.000 .0025975 .0037862 554 | -.0026723 .000329 -8.12 0.000 -.0033172 -.0020274 578 | .0060698 .0002469 24.59 0.000 .0055859 .0065537 608 | -.0210231 .0005736 -36.65 0.000 -.0221473 -.0198988 616 | -.0085458 .0005771 -14.81 0.000 -.009677 -.0074146 620 | -.0049764 .0004961 -10.03 0.000 -.0059489 -.004004 702 | .0004065 .0007152 0.57 0.570 -.0009953 .0018083 710 | -.0237854 .0005235 -45.44 0.000 -.0248114 -.0227593 724 | -.0043472 .0002226 -19.53 0.000 -.0047836 -.0039109 752 | .0014386 .000297 4.84 0.000 .0008565 .0020207 788 | -.0255585 .0008276 -30.88 0.000 -.0271806 -.0239364 792 | -.021671 .0004094 -52.93 0.000 -.0224735 -.0208685 826 | -.0017844 .0003208 -5.56 0.000 -.0024132 -.0011557 840 | .0179586 .000364 49.33 0.000 .0172451 .0186721 | isic1 | 16 | .025331 .0007565 33.49 0.000 .0238483 .0268138 17 | -.0061132 .0002264 -27.00 0.000 -.0065569 -.0056695 18 | -.0116301 .0003828 -30.38 0.000 -.0123804 -.0108797 20 | -.0029236 .0003337 -8.76 0.000 -.0035776 -.0022696 21 | .0013253 .0002468 5.37 0.000 .0008415 .001809 22 | -.0046862 .0002594 -18.07 0.000 -.0051946 -.0041778 23 | .0315788 .0006417 49.21 0.000 .0303211 .0328365 24 | .0109738 .0003127 35.09 0.000 .0103608 .0115867 25 | -.0023501 .000214 -10.98 0.000 -.0027696 -.0019307 26 | .003186 .0002074 15.36 0.000 .0027795 .0035926 27 | .0055117 .0002954 18.66 0.000 .0049328 .0060906 28 | -.0032884 .000185 -17.77 0.000 -.0036511 -.0029257 29 | .0001126 .0002969 0.38 0.705 -.0004693 .0006944 31 | .00112 .000283 3.96 0.000 .0005653 .0016746 33 | -.0086865 .0004764 -18.23 0.000 -.0096203 -.0077527 34 | .0040468 .0003594 11.26 0.000 .0033424 .0047513 36 | -.0045853 .0002575 -17.81 0.000 -.0050899 -.0040806 | year | 1964 | .0000732 .0007287 0.10 0.920 -.0013551 .0015014 1965 | -.0000264 .000729 -0.04 0.971 -.0014552 .0014025 1966 | .0000873 .0007208 0.12 0.904 -.0013255 .0015 1967 | -6.45e-06 .0007294 -0.01 0.993 -.0014361 .0014232 1968 | .000017 .0007066 0.02 0.981 -.0013679 .001402 1969 | -.0000718 .0007184 -0.10 0.920 -.0014799 .0013363 1970 | -.0000416 .0007044 -0.06 0.953 -.0014223 .0013391 1971 | -.0001076 .0007116 -0.15 0.880 -.0015023 .0012871 1972 | -.0000416 .0007044 -0.06 0.953 -.0014223 .0013391 1973 | -.000079 .0007101 -0.11 0.911 -.0014708 .0013127 1974 | -.000079 .0007101 -0.11 0.911 -.0014708 .0013127 1975 | -.000079 .0007101 -0.11 0.911 -.0014708 .0013127 1976 | -.0000136 .0007276 -0.02 0.985 -.0014398 .0014125 1977 | -.0000136 .0007276 -0.02 0.985 -.0014398 .0014125 1978 | .0000252 .0007274 0.03 0.972 -.0014005 .0014508 1979 | .0000252 .0007274 0.03 0.972 -.0014005 .0014508 1980 | .0000252 .0007274 0.03 0.972 -.0014005 .0014508 1981 | .0000627 .000713 0.09 0.930 -.0013348 .0014602 1982 | .0001107 .0007083 0.16 0.876 -.0012776 .0014989 1983 | .0001543 .0007068 0.22 0.827 -.001231 .0015397 1984 | .0001543 .0007068 0.22 0.827 -.001231 .0015397 1985 | -.0000907 .0006901 -0.13 0.895 -.0014433 .001262 1986 | -.0000948 .0006895 -0.14 0.891 -.0014463 .0012567 1987 | -.0000948 .0006895 -0.14 0.891 -.0014463 .0012567 1988 | -.0001156 .0006878 -0.17 0.867 -.0014637 .0012326 1989 | -.0001189 .0006949 -0.17 0.864 -.0014809 .0012431 1990 | -.0000208 .000678 -0.03 0.975 -.0013497 .001308 1991 | -.0000585 .0006832 -0.09 0.932 -.0013977 .0012807 1992 | -.0000316 .0006836 -0.05 0.963 -.0013715 .0013083 1993 | .0000876 .0006821 0.13 0.898 -.0012494 .0014246 1994 | .0000723 .0006825 0.11 0.916 -.0012654 .00141 1995 | -9.96e-06 .0006828 -0.01 0.988 -.0013483 .0013284 1996 | -.0000905 .0006862 -0.13 0.895 -.0014355 .0012545 1997 | -.000104 .000687 -0.15 0.880 -.0014505 .0012425 1998 | -.0000916 .0006882 -0.13 0.894 -.0014406 .0012573 1999 | -.0001222 .0006815 -0.18 0.858 -.0014578 .0012135 2000 | -3.76e-06 .0006777 -0.01 0.996 -.0013321 .0013246 2001 | -3.76e-06 .0006777 -0.01 0.996 -.0013321 .0013246 2002 | -.0000629 .0006784 -0.09 0.926 -.0013926 .0012668 2003 | -.0001132 .0006769 -0.17 0.867 -.0014398 .0012135 2004 | -.0001642 .0006751 -0.24 0.808 -.0014874 .001159 2005 | -.0002042 .000674 -0.30 0.762 -.0015253 .0011169 2006 | -.0001419 .0006855 -0.21 0.836 -.0014856 .0012018 2007 | -.0001185 .0006844 -0.17 0.863 -.0014599 .001223 2008 | -9.76e-06 .0006807 -0.01 0.989 -.001344 .0013245 2009 | 1.13e-06 .0006806 0.00 0.999 -.0013328 .0013351 2010 | .0000321 .0006786 0.05 0.962 -.0012979 .0013621 2011 | .0000275 .0006781 0.04 0.968 -.0013016 .0013566 2012 | .0000257 .0006785 0.04 0.970 -.0013042 .0013557 2013 | -.0000848 .0006801 -0.12 0.901 -.0014179 .0012483 2014 | -.0000848 .0006801 -0.12 0.901 -.0014179 .0012483 2015 | -.0000989 .0006794 -0.15 0.884 -.0014305 .0012327 2016 | -.0000846 .0006797 -0.12 0.901 -.0014168 .0012476 2017 | -.0000989 .0006794 -0.15 0.884 -.0014305 .0012327 2018 | -.0001544 .00068 -0.23 0.820 -.0014872 .0011784 2019 | -.0002536 .0006767 -0.37 0.708 -.0015799 .0010727 | _cons | .1788519 .0029782 60.05 0.000 .1730145 .1846893
How can I run these type of regressions on five year periods? (I tried creating a period=5*floor(year/5) and collapsed all variables by period but I am sure that's not the right approach given that variables don't smooth as necessary)
Code:
* Example generated by -dataex-. To install: ssc install dataex. (dataex for year==1980) clear input int country long isic1 int year float(ln_1980 ln_2019 val_per_worker) 4 1 1980 . . . 4 2 1980 . . . 4 3 1980 . . . 4 7 1980 . . . 4 8 1980 . . . 4 9 1980 . . . 4 10 1980 . . . 4 11 1980 . . . 4 12 1980 . . . 4 13 1980 . . . 4 14 1980 . . . 4 19 1980 . . . 12 1 1980 9.580441 . 14478.798 12 2 1980 9.812777 . 18265.635 12 3 1980 9.303091 . 10971.88 12 6 1980 9.24304 . 10332.405 12 7 1980 9.258244 . 10490.695 12 8 1980 9.153545 . 9447.88 12 9 1980 9.917997 . 20292.32 12 10 1980 9.518955 . 13615.38 12 11 1980 9.709127 . 16467.232 12 12 1980 9.581053 . 14487.66 12 13 1980 9.226204 . 10159.896 12 14 1980 9.170505 . 9609.476 12 19 1980 9.250774 . 10412.628 12 22 1980 9.29205 . 10851.406 32 1 1980 . . . 32 2 1980 . . . 32 3 1980 . . . 32 6 1980 . . . 32 7 1980 . . . 32 8 1980 . . . 32 9 1980 . . . 32 10 1980 . . . 32 11 1980 . . . 32 12 1980 . . . 32 13 1980 . . . 32 14 1980 . . . 32 19 1980 . . . 32 22 1980 . . . 36 1 1980 10.19185 11.27491 26684.79 36 2 1980 10.812643 . 49644.52 36 3 1980 9.952108 11.057722 20996.443 36 6 1980 10.01615 11.200987 22385.094 36 7 1980 10.261066 11.73419 28597.273 36 8 1980 10.108777 11.145988 24557.604 36 9 1980 10.9824 12.420651 58829.51 36 10 1980 10.593992 11.827066 39894.42 36 11 1980 10.12378 11.394923 24928.855 36 12 1980 10.39719 11.676742 32767.406 36 13 1980 10.493634 12.208467 36085.063 36 14 1980 10.045395 11.150683 23049.39 36 19 1980 10.276264 . 29035.21 36 22 1980 9.887255 10.997367 19677.96 40 1 1980 10.13358 11.35429 25174.35 40 2 1980 13.0132 . 448291.7 40 3 1980 9.703811 11.272364 16379.904 40 6 1980 10.0043 11.47619 22121.377 40 7 1980 10.242295 11.9454 28065.477 40 8 1980 10.05137 11.366877 23187.52 40 9 1980 10.233692 12.53686 27825.047 40 10 1980 10.256224 12.002503 28459.11 40 11 1980 9.957572 11.39565 21111.477 40 12 1980 10.236194 11.52606 27894.76 40 13 1980 9.995841 11.841247 21935.05 40 14 1980 9.927979 11.441514 20495.885 40 19 1980 9.544119 . 13962.332 40 22 1980 9.876512 11.21545 19467.693 50 1 1980 7.696788 . 2201.2664 50 2 1980 9.770756 . 17514.006 50 3 1980 7.11579 . 1231.2556 50 6 1980 7.450129 . 1720.0842 50 7 1980 7.857102 . 2584.022 50 8 1980 7.191204 . 1327.7004 50 9 1980 8.849745 . 6972.608 50 10 1980 8.372579 . 4326.7773 50 11 1980 7.205095 . 1346.272 50 12 1980 8.07377 . 3209.1775 50 13 1980 8.379707 . 4357.7314 50 14 1980 6.955295 . 1048.6879 50 19 1980 6.464489 . 641.9365 50 22 1980 7.856623 . 2582.784 52 1 1980 9.238615 . 10286.777 52 2 1980 9.31109 . 11060 52 3 1980 8.346621 . 4215.909 52 6 1980 . . . 52 7 1980 9.006888 . 8159.091 52 8 1980 9.0155525 . 8230.089 52 9 1980 . . . 52 12 1980 8.921475 . 7491.131 52 13 1980 . . . 52 14 1980 8.949831 . 7706.587 52 19 1980 . . . 52 22 1980 8.678367 . 5874.443 56 1 1980 10.797876 11.627295 48916.82 56 2 1980 10.286183 11.64817 29324.65 56 3 1980 9.986129 11.22177 21723.05 56 6 1980 9.690048 11.650793 16156.028 56 7 1980 10.365226 11.622216 31736.594 56 8 1980 10.215666 11.46358 27327.975 end label values isic1 isic1 label def isic1 1 "15", modify label def isic1 2 "16", modify label def isic1 3 "17", modify label def isic1 6 "20", modify label def isic1 7 "21", modify label def isic1 8 "22", modify label def isic1 9 "23", modify label def isic1 10 "24", modify label def isic1 11 "25", modify label def isic1 12 "26", modify label def isic1 13 "27", modify label def isic1 14 "28", modify label def isic1 19 "33", modify label def isic1 22 "36", modify
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int country long isic1 int year float(ln_1980 ln_2019 val_per_worker). (dataex for 2019) 4 1 2019 . . . 4 2 2019 . . . 4 3 2019 . . . 4 4 2019 . . . 4 5 2019 . . . 4 6 2019 . . . 4 7 2019 . . . 4 8 2019 . . . 4 9 2019 . . . 4 10 2019 . . . 4 11 2019 . . . 4 12 2019 . . . 4 13 2019 . . . 4 14 2019 . . . 4 15 2019 . . . 4 17 2019 . . . 4 21 2019 . . . 4 22 2019 . . . 8 1 2019 . 9.021728 . 8 2 2019 . . . 8 3 2019 . 8.702798 . 8 4 2019 . 8.546796 . 8 5 2019 . 8.603961 . 8 6 2019 . 9.185748 . 8 7 2019 . 8.799856 . 8 8 2019 . 9.77126 . 8 9 2019 . 10.12641 . 8 10 2019 . 9.728291 . 8 11 2019 . 9.065746 . 8 12 2019 . 9.733746 . 8 13 2019 . 11.00635 . 8 14 2019 . 9.366294 . 8 15 2019 . 9.453305 . 8 16 2019 . 8.756976 . 8 17 2019 . . . 8 18 2019 . . . 8 19 2019 . . . 8 20 2019 . . . 8 21 2019 . . . 8 22 2019 . 8.784404 . 12 1 2019 9.580441 . . 12 2 2019 9.812777 . . 12 3 2019 9.303091 . . 12 4 2019 9.029025 . . 12 5 2019 . . . 12 6 2019 9.24304 . . 12 7 2019 9.258244 . . 12 8 2019 9.153545 . . 12 9 2019 9.917997 . . 12 10 2019 9.518955 . . 12 11 2019 9.709127 . . 12 12 2019 9.581053 . . 12 13 2019 9.226204 . . 12 14 2019 9.170505 . . 12 15 2019 9.198872 . . 12 16 2019 . . . 12 17 2019 9.332821 . . 12 18 2019 . . . 12 19 2019 9.250774 . . 12 20 2019 9.249175 . . 12 21 2019 . . . 12 22 2019 9.29205 . . 24 1 2019 . . . 24 2 2019 . . . 24 3 2019 . . . 24 4 2019 . . . 24 5 2019 . . . 24 6 2019 . . . 24 9 2019 . . . 24 10 2019 . . . 24 11 2019 . . . 24 12 2019 . . . 24 13 2019 . . . 24 14 2019 . . . 24 15 2019 . . . 24 16 2019 . . . 24 17 2019 . . . 24 18 2019 . . . 24 19 2019 . . . 24 20 2019 . . . 24 21 2019 . . . 24 22 2019 . . . 31 1 2019 . 9.747452 . 31 2 2019 . 9.728014 . 31 3 2019 . 9.179392 . 31 4 2019 . 8.43468 . 31 5 2019 . 8.435524 . 31 6 2019 . 9.234807 . 31 7 2019 . 8.900663 . 31 8 2019 . 9.747595 . 31 9 2019 . 12.20364 . 31 10 2019 . 9.638375 . 31 11 2019 . 8.9854965 . 31 12 2019 . 9.674052 . 31 13 2019 . 10.30322 . 31 14 2019 . 9.728508 . 31 15 2019 . 9.339003 . 31 16 2019 . 9.584867 . 31 17 2019 . 8.782279 . 31 18 2019 . . . end label values isic1 isic1 label def isic1 1 "15", modify label def isic1 2 "16", modify label def isic1 3 "17", modify label def isic1 4 "18", modify label def isic1 5 "19", modify label def isic1 6 "20", modify label def isic1 7 "21", modify label def isic1 8 "22", modify label def isic1 9 "23", modify label def isic1 10 "24", modify label def isic1 11 "25", modify label def isic1 12 "26", modify label def isic1 13 "27", modify label def isic1 14 "28", modify label def isic1 15 "29", modify label def isic1 16 "30", modify label def isic1 17 "31", modify label def isic1 18 "32", modify label def isic1 19 "33", modify label def isic1 20 "34", modify label def isic1 21 "35", modify label def isic1 22 "36", modify