Hi there, i would like to ask for opinions regarding overidentified model. I want to do a research on child labour on district level in Indonesia. I have a small panel data consist of 34 N and 8 T, with 1 dependent variable (child labour) and 3 independent variables (unemployement, average household expenditure, average length of school). I use Arellano-Bond estimation and Sargan Test and found that my model is overidentified.
my questions are:
- am i using the right method to do this research? and if i am, am i doing the steps right?
- what is overidentified and what should i do if the Sargan Test result shows that my model is overidentified?
below is my command:
and below is my dataset (i use ipolate to manipulate the missing values)
Thank you in advanced
my questions are:
- am i using the right method to do this research? and if i am, am i doing the steps right?
- what is overidentified and what should i do if the Sargan Test result shows that my model is overidentified?
below is my command:
Code:
encode Provinsi, gen(Prov) xtset Prov Tahun panel variable: Prov (strongly balanced) time variable: Tahun, 2012 to 2019 delta: 1 unit . xtabond C P R T, lags(1) artests(2) Arellano-Bond dynamic panel-data estimation Number of obs = 204 Group variable: Prov Number of groups = 34 Time variable: Tahun Obs per group: min = 6 avg = 6 max = 6 Number of instruments = 21 Wald chi2(4) = 42.56 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ C | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- C | L1. | .3403482 .0642567 5.30 0.000 .2144075 .466289 | P | .0090138 .0048503 1.86 0.063 -.0004926 .0185202 R | -2367.249 3238.778 -0.73 0.465 -8715.138 3980.64 T | -70.68445 397.1617 -0.18 0.859 -849.107 707.7381 _cons | 15609.8 22564.17 0.69 0.489 -28615.15 59834.76 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(2/.).C Standard: D.P D.R D.T Instruments for level equation Standard: _cons . estat sargan Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid chi2(16) = 78.47937 Prob > chi2 = 0.0000
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str20 Provinsi int Tahun double(P R C T) long Prov "Aceh" 2012 584100 8.36 2096 9.06 1 "Aceh" 2013 627381 8.44 2326.5 10.12 1 "Aceh" 2014 679850 8.71 2557 9.02 1 "Aceh" 2015 752118 8.77 1884 9.93 1 "Aceh" 2016 808094 8.86 453 7.57 1 "Aceh" 2017 902994.59 8.98 5556 6.57 1 "Aceh" 2018 973817.35 9.09 5454 6.34 1 "Aceh" 2019 993433.33 9.18 2602 6.17 1 "Bali" 2012 818697 7.25 13642 3.43 2 "Bali" 2013 939726 7.32 11156.5 3.65 2 "Bali" 2014 1047711 7.35 8671 5.14 2 "Bali" 2015 1118101 7.46 8026 6.29 2 "Bali" 2016 1211879 7.62 13605 2.6 2 "Bali" 2017 1360994.3 7.78 8221 3.78 2 "Bali" 2018 1419495.2 7.84 12357 3.61 2 "Bali" 2019 1509974.2 7.98 7904 3.58 2 "Banten" 2012 705098 7.85 4030 7.03 3 "Banten" 2013 818267 8.1 2704.5 6.58 3 "Banten" 2014 931436 8.35 1379 6.13 3 "Banten" 2015 1044605 8.36 2465 5.68 3 "Banten" 2016 1157774 8.49 9971 5.23 3 "Banten" 2017 1303765.8 8.62 3885 5.54 3 "Banten" 2018 1414572.8 8.87 5135 5.11 3 "Banten" 2019 1455946.9 8.94 4273 4.49 3 "Bengkulu" 2012 542220 6.92 1695 4.47 4 "Bengkulu" 2013 580271 6.96 1339 4.15 4 "Bengkulu" 2014 644011 6.97 983 4.18 4 "Bengkulu" 2015 667401 7.05 359 4.65 4 "Bengkulu" 2016 774525 7.12 3530 2.76 4 "Bengkulu" 2017 898382.51 7.28 1162 4.28 4 "Bengkulu" 2018 899727.88 7.46 1601 3.7 4 "Bengkulu" 2019 1002864.4 7.69 2676 3.76 4 "DI Yogyakarta" 2012 699727 7.73 3602 3.14 5 "DI Yogyakarta" 2013 784864 7.79 2297 3 5 "DI Yogyakarta" 2014 900699 7.82 992 3.24 5 "DI Yogyakarta" 2015 920786 8.03 1034 4.54 5 "DI Yogyakarta" 2016 1044770 8.13 1709 4.82 5 "DI Yogyakarta" 2017 1134979.4 8.29 1423 4.23 5 "DI Yogyakarta" 2018 1224306.5 8.37 3830 3.91 5 "DI Yogyakarta" 2019 1287201.4 8.51 2212 4.04 5 "DKI Jakarta" 2012 498094 6.85 3000 4.11 6 "DKI Jakarta" 2013 571752 6.9 2333 4.3 6 "DKI Jakarta" 2014 659839 7.05 1666 4.19 6 "DKI Jakarta" 2015 830472 7.14 3154 4.47 6 "DKI Jakarta" 2016 870412 7.23 2901 4.21 6 "DKI Jakarta" 2017 938801.32 7.34 2834 4 6 "DKI Jakarta" 2018 1006077.5 7.39 881 3.91 6 "DKI Jakarta" 2019 1036176.7 7.59 1183 3.82 6 "Gorontalo" 2012 584341 7.73 1237 3.95 7 "Gorontalo" 2013 648554 7.82 958.5 4.19 7 "Gorontalo" 2014 700073 7.89 680 3.68 7 "Gorontalo" 2015 760612 7.97 1000 4.1 7 "Gorontalo" 2016 842912 8.12 2204 3.29 7 "Gorontalo" 2017 918349.42 8.29 1562 3.81 7 "Gorontalo" 2018 940635 8.52 2189 3.37 7 "Gorontalo" 2019 983640.61 8.75 1542 3.11 7 "Jambi" 2012 700296 8.63 2034 3.9 8 "Jambi" 2013 777409 8.72 1463.5 3.24 8 "Jambi" 2014 780346 8.84 893 3.33 8 "Jambi" 2015 928602 9 2280 4.07 8 "Jambi" 2016 1070962 9.12 3540 2.72 8 "Jambi" 2017 1140166.4 9.19 3187 3.02 8 "Jambi" 2018 1302661.1 9.32 1905 3.37 8 "Jambi" 2019 1339725.6 9.38 1457 3.18 8 "Jawa Barat" 2012 613273 6.62 8402 3.54 9 "Jawa Barat" 2013 672211 6.69 9172.5 3.99 9 "Jawa Barat" 2014 786711 6.83 9943 4.04 9 "Jawa Barat" 2015 783050 6.93 3533 5.15 9 "Jawa Barat" 2016 860227 6.98 15784 4.23 9 "Jawa Barat" 2017 929135.41 7.05 28737 4.36 9 "Jawa Barat" 2018 1028671.8 7.12 27270 4.18 9 "Jawa Barat" 2019 1080369.7 7.31 17438 4.35 9 "Jawa Tengah" 2012 751833 7.48 19508 5.19 10 "Jawa Tengah" 2013 813926 7.59 17249.5 3.66 10 "Jawa Tengah" 2014 880425 7.6 14991 3.8 10 "Jawa Tengah" 2015 956156 7.76 8664 4.92 10 "Jawa Tengah" 2016 1047247 7.89 7941 5.45 10 "Jawa Tengah" 2017 1157806 7.99 14108 4.77 10 "Jawa Tengah" 2018 1226469 8 20514 4.35 10 "Jawa Tengah" 2019 1250362.5 8.2 13868 4.18 10 "Jawa Timur" 2012 949152 8.83 12613 9.02 11 "Jawa Timur" 2013 1065917 8.87 11645.5 7.95 11 "Jawa Timur" 2014 1127400 9.04 10678 7.38 11 "Jawa Timur" 2015 1193642 9.15 11328 7.5 11 "Jawa Timur" 2016 1296926 9.24 16338 7.95 11 "Jawa Timur" 2017 1443927.9 9.36 20800 6.91 11 "Jawa Timur" 2018 1560354.5 9.48 15523 6.41 11 "Jawa Timur" 2019 1617640.1 9.7 20899 5.94 11 "Kalimantan Barat" 2012 597163 8.8 4227 7.71 12 "Kalimantan Barat" 2013 649515 8.81 2732.5 9.91 12 "Kalimantan Barat" 2014 748665 9.15 1238 10.51 12 "Kalimantan Barat" 2015 794355 9.16 1746 9.93 12 "Kalimantan Barat" 2016 846106 9.27 1505 7.05 12 "Kalimantan Barat" 2017 903859.3 9.38 4537 9.29 12 "Kalimantan Barat" 2018 965837 9.58 2524 6.95 12 "Kalimantan Barat" 2019 1002239.1 9.81 3910 6.69 12 "Kalimantan Selatan" 2012 484661 6.33 6162 5.23 13 "Kalimantan Selatan" 2013 547748 6.54 5186.5 5.3 13 "Kalimantan Selatan" 2014 636019 6.67 4211 5.75 13 "Kalimantan Selatan" 2015 668499 6.71 2106 5.69 13 end label values Prov Prov label def Prov 1 "Aceh", modify label def Prov 2 "Bali", modify label def Prov 3 "Banten", modify label def Prov 4 "Bengkulu", modify label def Prov 5 "DI Yogyakarta", modify label def Prov 6 "DKI Jakarta", modify label def Prov 7 "Gorontalo", modify label def Prov 8 "Jambi", modify label def Prov 9 "Jawa Barat", modify label def Prov 10 "Jawa Tengah", modify label def Prov 11 "Jawa Timur", modify label def Prov 12 "Kalimantan Barat", modify label def Prov 13 "Kalimantan Selatan", modify
Comment