Hello!
I am running a probit model where I use math scores in one specification and Chinese score in another specification as measures of the same variable.
However, the problem is that in one specification another variable (land size) is positive and significant at the conventional levels and in another specification it is negative and significant.
I am wondering if it may be possible that the fact of using these two different scores is changing the sign of the land size variable in the sense that the scores variable is correlated to the land size variable (not in theory but just a coincidence).
Please note that the Chinese and math scores have both positive and negative values while the land size variable is always positive.
The dependent variable is a binary one where 1= migration and 0 = no migration.
Below is the estimation results:
Now, if I run the simple regressions where I only include the test score and land size variables, I get the following:
Thank you for your help.
I am running a probit model where I use math scores in one specification and Chinese score in another specification as measures of the same variable.
However, the problem is that in one specification another variable (land size) is positive and significant at the conventional levels and in another specification it is negative and significant.
I am wondering if it may be possible that the fact of using these two different scores is changing the sign of the land size variable in the sense that the scores variable is correlated to the land size variable (not in theory but just a coincidence).
Please note that the Chinese and math scores have both positive and negative values while the land size variable is always positive.
The dependent variable is a binary one where 1= migration and 0 = no migration.
Below is the estimation results:
- With math score
Code:
Probit regression Number of obs = 1,767 Replications = 1,000 Wald chi2(19) = 321.07 Prob > chi2 = 0.0000 Log likelihood = -552.38318 Pseudo R2 = 0.3151 ---------------------------------------------------------------------------------------- | Observed Bootstrap Normal-based M_P | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- __________________ Income | 1.877601 .573929 3.27 0.001 .7527208 3.002481 ______ Income squared | -3.157901 1.203905 -2.62 0.009 -5.517512 -.79829 ______________Test score | .1218852 .0331745 3.67 0.000 .0568643 .186906 _______Test score squared | -.0078734 .0024398 -3.23 0.001 -.0126553 -.0030915 _______ IncomeXTest score | -.0901189 .0713313 -1.26 0.206 -.2299257 .0496879 ________________Land size | -.085268 .0131477 -6.49 0.000 -.1110371 -.0594989 Other Xs here ---------------------------------------------------------------------------------------- Note: 9 failures and 0 successes completely determined.
- with Chinese score
Code:
Probit regression Number of obs = 1,767 Replications = 1,000 Wald chi2(19) = 242.84 Prob > chi2 = 0.0000 Log likelihood = -248.33463 Pseudo R2 = 0.6921 ----------------------------------------------------------------------------------------- | Observed Bootstrap Normal-based M_P | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------+---------------------------------------------------------------- __________________Income| 1.442293 .6379811 2.26 0.024 .1918728 2.692713 ______Income squared | -3.478919 1.687054 -2.06 0.039 -6.785485 -.1723529 ______________Test score | .3454658 .0360982 9.57 0.000 .2747147 .4162169 _______Test score squared | -.0140432 .0039948 -3.52 0.000 -.0218729 -.0062134 _______IncomeXTest score | -.1937659 .1092818 -1.77 0.076 -.4079543 .0204225 ________________Land size| .0557323 .0171623 3.25 0.001 .0220948 .0893699 Other Xs here ----------------------------------------------------------------------------------------- Note: 136 failures and 0 successes completely determined.
- With Chinese score
Code:
reg Land_size_08 Test score Source | SS df MS Number of obs = 1,767 -------------+---------------------------------- F(1, 1765) = 42.05 Model | 1139.82304 1 1139.82304 Prob > F = 0.0000 Residual | 47840.4371 1,765 27.1050635 R-squared = 0.0233 -------------+---------------------------------- Adj R-squared = 0.0227 Total | 48980.2602 1,766 27.7351417 Root MSE = 5.2063 --------------------------------------------------------------------------------------- Land_size_08 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- Test score | -.1800086 .0277587 -6.48 0.000 -.234452 -.1255651 _cons | 3.257215 .2408442 13.52 0.000 2.784845 3.729585 --------------------------------------------------------------------------------------- . reg Land_size_08 Test score Test score squared Source | SS df MS Number of obs = 1,767 -------------+---------------------------------- F(2, 1764) = 47.49 Model | 2502.54688 2 1251.27344 Prob > F = 0.0000 Residual | 46477.7133 1,764 26.34791 R-squared = 0.0511 -------------+---------------------------------- Adj R-squared = 0.0500 Total | 48980.2602 1,766 27.7351417 Root MSE = 5.133 ----------------------------------------------------------------------------------------- Land_size_08 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------+---------------------------------------------------------------- Test score | .1917083 .0584856 3.28 0.001 .0769998 .3064167 Test score squared | .0298946 .0041568 7.19 0.000 .0217418 .0380474 _cons | 3.772802 .248043 15.21 0.000 3.286313 4.259291 -----------------------------------------------------------------------------------------
- With math score
Code:
. reg Land_size_08 Test score Source | SS df MS Number of obs = 1,767 -------------+---------------------------------- F(1, 1765) = 386.44 Model | 8797.76244 1 8797.76244 Prob > F = 0.0000 Residual | 40182.4977 1,765 22.7662877 R-squared = 0.1796 -------------+---------------------------------- Adj R-squared = 0.1792 Total | 48980.2602 1,766 27.7351417 Root MSE = 4.7714 -------------------------------------------------------------------------------------- Land_size_08 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- Test score| .5048024 .0256792 19.66 0.000 .4544376 .5551672 _cons | 8.820562 .2430064 36.30 0.000 8.343952 9.297173 -------------------------------------------------------------------------------------- . reg Land_size_08 Test score Test score squred Source | SS df MS Number of obs = 1,767 -------------+---------------------------------- F(2, 1764) = 498.23 Model | 17680.6472 2 8840.32358 Prob > F = 0.0000 Residual | 31299.613 1,764 17.7435448 R-squared = 0.3610 -------------+---------------------------------- Adj R-squared = 0.3603 Total | 48980.2602 1,766 27.7351417 Root MSE = 4.2123 ---------------------------------------------------------------------------------------- Land_size_08 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- Test score| 1.404657 .046167 30.43 0.000 1.314109 1.495204 Test score squared | .062689 .0028018 22.37 0.000 .0571938 .0681841 _cons | 10.73609 .2309831 46.48 0.000 10.28306 11.18912 ----------------------------------------------------------------------------------------
Comment