Dear All,
I am trying to estimate a fixed-effects IV poisson equivalent using the control function approach advised by @Jeff Wooldridge here. I have a panel data where LgAneedc is my outcome, Lgm is the endogenous regressor of interest and LgrcxtotC is the instrument.
But, when I run my boostrap command to estimate the corrected SE's I get the following error:
Any suggestions on what I may be doing wrong? I am new to bootstrap programs so I will be very grateful for suggested edits to the above to fix this, please.
Many thanks,
Sumedha
I am trying to estimate a fixed-effects IV poisson equivalent using the control function approach advised by @Jeff Wooldridge here. I have a panel data where LgAneedc is my outcome, Lgm is the endogenous regressor of interest and LgrcxtotC is the instrument.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(LgAneedc Lgm LgrcxtotC) long id float year 4.931884 11.599216 10.755259 5003 2001 0 11.334538 11.070945 5003 2003 0 10.918878 11.437474 5003 2005 0 10.61348 10.564497 5003 2007 0 10.765062 10.358118 5003 2009 0 11.425528 10.21865 5003 2011 0 11.290032 10.33008 5003 2013 0 11.40166 10.431248 5003 2015 0 11.40609 10.599012 5003 2017 0 11.729268 11.806968 6004 2001 0 11.085595 10.964026 6004 2003 0 10.971986 11.361266 6004 2005 4.775486 10.862973 10.83655 6004 2007 0 11.12455 10.838668 6004 2009 0 11.204343 10.602403 6004 2011 0 11.139434 10.73576 6004 2013 0 10.820865 10.519867 6004 2015 0 10.98978 10.27652 6004 2017 5.843838 12.3512 10.786705 6006 2001 0 11.960934 11.236396 6006 2003 0 12.428912 11.13863 6006 2005 0 12.19357 10.521012 6006 2007 0 11.91282 10.827817 6006 2009 0 11.81625 10.49183 6006 2011 0 12.28847 10.64877 6006 2013 0 12.474733 10.750503 6006 2015 0 12.41988 11.106917 6006 2017 0 11.545062 10.411545 6030 2001 4.888463 11.73737 10.86385 6030 2003 6.625171 11.590188 11.186399 6030 2005 0 11.644321 11.085802 6030 2007 4.425613 11.913424 11.149463 6030 2009 6.299826 11.986324 11.123384 6030 2011 5.334969 12.031132 11.340435 6030 2013 6.21779 12.37371 11.11862 6030 2015 6.204095 12.397298 11.391512 6030 2017 0 10.49827 10.017859 7004 2001 0 9.740772 9.546296 7004 2003 0 9.69968 9.931268 7004 2005 0 9.634616 9.710717 7004 2007 0 10.405068 9.711951 7004 2009 0 10.392364 9.742559 7004 2011 0 10.340804 9.741016 7004 2013 0 10.310172 10.703634 7004 2015 0 9.38021 9.558413 7004 2017 0 10.667672 9.296714 7033 2001 0 9.923084 9.116742 7033 2003 0 9.459681 8.334874 7033 2005 0 10.595987 9.197458 7033 2007 0 10.963642 9.979009 7033 2009 0 10.644748 9.658427 7033 2011 0 9.751442 9.654863 7033 2013 0 10.06172 9.5351305 7033 2015 0 9.728492 9.8928 7033 2017 0 10.208698 9.738981 7035 2001 0 10.33924 10.186704 7035 2003 0 10.411844 9.833261 7035 2005 0 10.72443 9.819488 7035 2007 0 10.167242 9.724209 7035 2009 4.1929417 10.323373 10.377182 7035 2011 0 10.738003 10.548703 7035 2013 0 10.31622 9.997307 7035 2015 0 8.544072 8.908122 7035 2017 0 9.926491 9.499844 10003 2001 0 9.234111 9.801512 10003 2003 0 9.631241 9.670174 10003 2005 0 10.21517 9.89855 10003 2007 0 9.616987 10.16682 10003 2009 0 9.828395 10.246012 10003 2011 0 9.608812 10.00275 10003 2013 0 9.614655 9.811955 10003 2015 0 9.839711 9.788421 10003 2017 0 10.01666 8.689496 10006 2001 0 9.74325 9.640999 10006 2003 0 9.017304 8.699591 10006 2005 0 10.49909 10.233783 10006 2007 0 10.598434 10.275494 10006 2009 0 10.445745 9.83636 10006 2011 0 10.51307 9.868604 10006 2013 0 10.820985 9.530792 10006 2015 0 10.558806 9.060495 10006 2017 0 10.485355 9.279651 10007 2001 0 10.47935 9.644846 10007 2003 0 10.353577 9.77598 10007 2005 0 10.339203 9.536077 10007 2007 0 10.181932 9.620173 10007 2009 0 10.22087 8.848678 10007 2011 0 10.035196 9.139127 10007 2013 0 8.344264 9.344272 10007 2015 0 9.710689 8.87498 10007 2017 0 11.431934 10.02675 11002 2001 0 10.52496 10.02533 11002 2003 4.1547513 10.495072 10.015833 11002 2005 0 10.365026 10.28105 11002 2007 0 10.527725 9.757092 11002 2009 0 10.95044 10.082738 11002 2011 6.248363 10.213922 9.578344 11002 2013 3.932989 9.716777 9.86972 11002 2015 3.246045 9.670991 9.428996 11002 2017 0 10.694862 9.891031 11003 2001 end
Code:
. capture program drop myboot . program define myboot, rclass 1. . * first stage . xtset id year 2. xtreg Lgm LgrcxtotC, fe cluster(newid) 3. predict double LgrcxtotChat_fe, e 4. * second stage . xtpoisson LgAneedc Lgm LgrcxtotChat_fe, fe vce(robust) 5. . return scalar bLgm = _b[Lgm] 6. return scalar bLgrcxtotChat_fe = _b[LgrcxtotChat_fe] 7. . return scalar seLgm = _se[Lgm] 8. return scalar seLgrcxtotChat_fe = _se[LgrcxtotChat_fe] 9. . end . xtset, clear . bootstrap r(bLgm) r(bLgrcxtotChat_fe) r(seLgm) r(seLgrcxtotChat_fe), reps(100) seed(123) cluster(id) idcluster(newid): myboot (running myboot on estimation sample) Bootstrap replications (100) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 50 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 100 insufficient observations to compute bootstrap standard errors no results will be saved r(2000); end of do-file r(2000);
Many thanks,
Sumedha
Comment