Hi there,
I intend to study how education and occupation are related to fathers' and mothers' time investment in parenting. Because I focus on mothers' and fathers' time investment respectively, I choose two ways to deal with the impact of gender: (a) adding interaction terms (gender##edu, gender##ocp); (b) regression on each gender group with suest.
About adding interaction terms in the model, the code is:
peduy means the parent's years of schooling; speduy means the spouse's years of schooling.
3 dummy variables for the parent's occupation (ocpcate_dum) and 3 dummy variables for the spouse's occupation (ocpcatesp_dum).
The results are (results of covariates are not shown):
As for the subgroup regression, the code is as below:
The results are (just show simultaneous results and tests):
My questions are:
Do the results of interaction terms and subgroup regression tell us the same thing?
I think I can get that, for example, the impact of spouse's occupation (ocpcatesp_dum) has no gender heterogeneity. However, in the Simultaneous results, the impact of spouse's occupation for fathers and mothers "look" quite different:
How to interpret the results of subgroup regression?
Thank you so much.
I intend to study how education and occupation are related to fathers' and mothers' time investment in parenting. Because I focus on mothers' and fathers' time investment respectively, I choose two ways to deal with the impact of gender: (a) adding interaction terms (gender##edu, gender##ocp); (b) regression on each gender group with suest.
About adding interaction terms in the model, the code is:
Code:
reg daily_time2 gender_p peduy speduy ocpcate_dum2 ocpcate_dum3 ocpcate_dum4 ocpcatesp_dum2 ocpcatesp_dum3 ocpcatesp_dum4 /// live_c splive_c sblive_c gplive_c othlive_c marital_s livearea_dum2 livearea_dum3 fam_culecores fam_livenvi /// page peth /// gender age mig13 sibrank_dum2 sibrank_dum3 sibrank_dum4 selftime_edu selftime_re cog_13 depression_13 schmisb_13 /// classz pincoml private /// i.gender_p##c.peduy i.gender_p##c.speduy /// i.gender_p##i.ocpcate_dum2 i.gender_p##i.ocpcate_dum3 i.gender_p##i.ocpcate_dum4 /// i.gender_p##i.ocpcatesp_dum2 i.gender_p##i.ocpcatesp_dum3 i.gender_p##i.ocpcatesp_dum4, vce(robust)
3 dummy variables for the parent's occupation (ocpcate_dum) and 3 dummy variables for the spouse's occupation (ocpcatesp_dum).
The results are (results of covariates are not shown):
Linear regression Number of obs = 9,508
F(43, 9464) = 58.70
Prob > F = 0.0000
R-squared = 0.1909
Root MSE = 2.2099
---------------------------------------------------------------------------------------
| Robust
daily_time2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
gender_p | -2.025758 .3423148 -5.92 0.000 -2.696768 -1.354747
peduy | .0128846 .0160059 0.80 0.421 -.0184903 .0442596
speduy | .0066183 .0176536 0.37 0.708 -.0279866 .0412231
ocpcate_dum2 | -.6571733 .1419606 -4.63 0.000 -.9354466 -.3789
ocpcate_dum3 | -.7833145 .1963067 -3.99 0.000 -1.168118 -.3985113
ocpcate_dum4 | -.8941722 .1701738 -5.25 0.000 -1.227749 -.5605951
ocpcatesp_dum2 | .1721731 .2258591 0.76 0.446 -.2705593 .6149054
ocpcatesp_dum3 | .5095036 .2955635 1.72 0.085 -.0698643 1.088872
ocpcatesp_dum4 | .480492 .2422597 1.98 0.047 .005611 .955373
1.gender_p | 0 (omitted)
peduy | 0 (omitted)
|
gender_p#c.peduy |
1 | -.0035093 .0190895 -0.18 0.854 -.0409288 .0339103
|
speduy | 0 (omitted)
|
gender_p#c.speduy |
1 | -.0191733 .0198346 -0.97 0.334 -.0580534 .0197068
|
1.ocpcate_dum2 | 0 (omitted)
|
gender_p#ocpcate_dum2 |
1 1 | .5448046 .196568 2.77 0.006 .1594891 .9301202
|
1.ocpcate_dum3 | 0 (omitted)
|
gender_p#ocpcate_dum3 |
1 1 | .9546625 .265345 3.60 0.000 .4345293 1.474796
|
1.ocpcate_dum4 | 0 (omitted)
|
gender_p#ocpcate_dum4 |
1 1 | .9423153 .2270512 4.15 0.000 .4972463 1.387384
|
1.ocpcatesp_dum2 | 0 (omitted)
|
gender_p#ocpcatesp_dum2 |
1 1 | .1734514 .2376521 0.73 0.465 -.2923977 .6393005
|
1.ocpcatesp_dum3 | 0 (omitted)
|
gender_p#ocpcatesp_dum3 |
1 1 | -.3412283 .3165165 -1.08 0.281 -.9616686 .279212
|
1.ocpcatesp_dum4 | 0 (omitted)
|
gender_p#ocpcatesp_dum4 |
1 1 | -.1851254 .2621893 -0.71 0.480 -.6990728 .328822
|
_cons | 1.751216 .6408113 2.73 0.006 .4950884 3.007344
---------------------------------------------------------------------------------------
.
end of do-file
F(43, 9464) = 58.70
Prob > F = 0.0000
R-squared = 0.1909
Root MSE = 2.2099
---------------------------------------------------------------------------------------
| Robust
daily_time2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
gender_p | -2.025758 .3423148 -5.92 0.000 -2.696768 -1.354747
peduy | .0128846 .0160059 0.80 0.421 -.0184903 .0442596
speduy | .0066183 .0176536 0.37 0.708 -.0279866 .0412231
ocpcate_dum2 | -.6571733 .1419606 -4.63 0.000 -.9354466 -.3789
ocpcate_dum3 | -.7833145 .1963067 -3.99 0.000 -1.168118 -.3985113
ocpcate_dum4 | -.8941722 .1701738 -5.25 0.000 -1.227749 -.5605951
ocpcatesp_dum2 | .1721731 .2258591 0.76 0.446 -.2705593 .6149054
ocpcatesp_dum3 | .5095036 .2955635 1.72 0.085 -.0698643 1.088872
ocpcatesp_dum4 | .480492 .2422597 1.98 0.047 .005611 .955373
1.gender_p | 0 (omitted)
peduy | 0 (omitted)
|
gender_p#c.peduy |
1 | -.0035093 .0190895 -0.18 0.854 -.0409288 .0339103
|
speduy | 0 (omitted)
|
gender_p#c.speduy |
1 | -.0191733 .0198346 -0.97 0.334 -.0580534 .0197068
|
1.ocpcate_dum2 | 0 (omitted)
|
gender_p#ocpcate_dum2 |
1 1 | .5448046 .196568 2.77 0.006 .1594891 .9301202
|
1.ocpcate_dum3 | 0 (omitted)
|
gender_p#ocpcate_dum3 |
1 1 | .9546625 .265345 3.60 0.000 .4345293 1.474796
|
1.ocpcate_dum4 | 0 (omitted)
|
gender_p#ocpcate_dum4 |
1 1 | .9423153 .2270512 4.15 0.000 .4972463 1.387384
|
1.ocpcatesp_dum2 | 0 (omitted)
|
gender_p#ocpcatesp_dum2 |
1 1 | .1734514 .2376521 0.73 0.465 -.2923977 .6393005
|
1.ocpcatesp_dum3 | 0 (omitted)
|
gender_p#ocpcatesp_dum3 |
1 1 | -.3412283 .3165165 -1.08 0.281 -.9616686 .279212
|
1.ocpcatesp_dum4 | 0 (omitted)
|
gender_p#ocpcatesp_dum4 |
1 1 | -.1851254 .2621893 -0.71 0.480 -.6990728 .328822
|
_cons | 1.751216 .6408113 2.73 0.006 .4950884 3.007344
---------------------------------------------------------------------------------------
.
end of do-file
As for the subgroup regression, the code is as below:
Code:
reg daily_time2 gender_p peduy speduy ocpcate_dum2 ocpcate_dum3 ocpcate_dum4 ocpcatesp_dum2 ocpcatesp_dum3 ocpcatesp_dum4 /// live_c splive_c sblive_c gplive_c othlive_c marital_s livearea_dum2 livearea_dum3 fam_culecores fam_livenvi /// page peth /// gender age mig13 sibrank_dum2 sibrank_dum3 sibrank_dum4 selftime_edu selftime_re cog_13 depression_13 schmisb_13 /// classz pincoml private if gender_p==0 est store daily_m reg daily_time2 gender_p peduy speduy ocpcate_dum2 ocpcate_dum3 ocpcate_dum4 ocpcatesp_dum2 ocpcatesp_dum3 ocpcatesp_dum4 /// live_c splive_c sblive_c gplive_c othlive_c marital_s livearea_dum2 livearea_dum3 fam_culecores fam_livenvi /// page peth /// gender age mig13 sibrank_dum2 sibrank_dum3 sibrank_dum4 selftime_edu selftime_re cog_13 depression_13 schmisb_13 /// classz pincoml private if gender_p==1 est store daily_f suest daily_m daily_f test [daily_m_mean]peduy = [daily_f_mean]peduy test [daily_m_mean]speduy = [daily_f_mean]speduy test [daily_m_mean]ocpcate_dum2 = [daily_f_mean]ocpcate_dum2 test [daily_m_mean]ocpcate_dum3 = [daily_f_mean]ocpcate_dum3 test [daily_m_mean]ocpcate_dum4 = [daily_f_mean]ocpcate_dum4 test [daily_m_mean]ocpcatesp_dum2 = [daily_f_mean]ocpcatesp_dum2 test [daily_m_mean]ocpcatesp_dum3 = [daily_f_mean]ocpcatesp_dum3 test [daily_m_mean]ocpcatesp_dum4 = [daily_f_mean]ocpcatesp_dum4
The results are (just show simultaneous results and tests):
Simultaneous results for daily_m, daily_f
Number of obs = 9,508
--------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
daily_m_mean |
gender_p | 0 (omitted)
peduy | .0042709 .0164781 0.26 0.795 -.0280256 .0365674
speduy | .0038929 .0179366 0.22 0.828 -.0312622 .0390481
ocpcate_dum2 | -.6382543 .1423337 -4.48 0.000 -.9172232 -.3592853
ocpcate_dum3 | -.7577436 .1963139 -3.86 0.000 -1.142512 -.3729753
ocpcate_dum4 | -.8749675 .1694062 -5.16 0.000 -1.206998 -.5429374
ocpcatesp_dum2 | .1403245 .226276 0.62 0.535 -.3031682 .5838173
ocpcatesp_dum3 | .5180557 .2937077 1.76 0.078 -.0576008 1.093712
ocpcatesp_dum4 | .4593349 .2422361 1.90 0.058 -.0154392 .9341089
_cons | 1.7019 1.04548 1.63 0.104 -.3472028 3.751003
---------------+----------------------------------------------------------------
daily_m_lnvar |
_cons | 1.968507 .0307041 64.11 0.000 1.908328 2.028686
---------------+----------------------------------------------------------------
daily_f_mean |
gender_p | 0 (omitted)
peduy | .0117149 .0106283 1.10 0.270 -.0091161 .032546
speduy | -.0058764 .0095221 -0.62 0.537 -.0245395 .0127866
ocpcate_dum2 | -.0844407 .1358409 -0.62 0.534 -.350684 .1818027
ocpcate_dum3 | .1370791 .1776663 0.77 0.440 -.2111405 .4852988
ocpcate_dum4 | .086198 .149824 0.58 0.565 -.2074517 .3798476
ocpcatesp_dum2 | .3252663 .0723523 4.50 0.000 .1834585 .4670742
ocpcatesp_dum3 | .1314536 .1096267 1.20 0.230 -.0834108 .3463179
ocpcatesp_dum4 | .2622342 .0977692 2.68 0.007 .0706101 .4538582
_cons | -.543665 .5717879 -0.95 0.342 -1.664349 .5770187
---------------+----------------------------------------------------------------
daily_f_lnvar |
_cons | .9294638 .0360856 25.76 0.000 .8587372 1.00019
--------------------------------------------------------------------------------
. test [daily_m_mean]peduy = [daily_f_mean]peduy
( 1) [daily_m_mean]peduy - [daily_f_mean]peduy = 0
chi2( 1) = 0.14
Prob > chi2 = 0.7042
. test [daily_m_mean]speduy = [daily_f_mean]speduy
( 1) [daily_m_mean]speduy - [daily_f_mean]speduy = 0
chi2( 1) = 0.23
Prob > chi2 = 0.6305
. test [daily_m_mean]ocpcate_dum2 = [daily_f_mean]ocpcate_dum2
( 1) [daily_m_mean]ocpcate_dum2 - [daily_f_mean]ocpcate_dum2 = 0
chi2( 1) = 7.92
Prob > chi2 = 0.0049
. test [daily_m_mean]ocpcate_dum3 = [daily_f_mean]ocpcate_dum3
( 1) [daily_m_mean]ocpcate_dum3 - [daily_f_mean]ocpcate_dum3 = 0
chi2( 1) = 11.42
Prob > chi2 = 0.0007
. test [daily_m_mean]ocpcate_dum4 = [daily_f_mean]ocpcate_dum4
( 1) [daily_m_mean]ocpcate_dum4 - [daily_f_mean]ocpcate_dum4 = 0
chi2( 1) = 18.06
Prob > chi2 = 0.0000
test [daily_m_mean]ocpcatesp_dum2 = [daily_f_mean]ocpcatesp_dum2
( 1) [daily_m_mean]ocpcatesp_dum2 - [daily_f_mean]ocpcatesp_dum2 = 0
chi2( 1) = 0.61
Prob > chi2 = 0.4363
. test [daily_m_mean]ocpcatesp_dum3 = [daily_f_mean]ocpcatesp_dum3
( 1) [daily_m_mean]ocpcatesp_dum3 - [daily_f_mean]ocpcatesp_dum3 = 0
chi2( 1) = 1.52
Prob > chi2 = 0.2175
. test [daily_m_mean]ocpcatesp_dum4 = [daily_f_mean]ocpcatesp_dum4
( 1) [daily_m_mean]ocpcatesp_dum4 - [daily_f_mean]ocpcatesp_dum4 = 0
chi2( 1) = 0.57
Prob > chi2 = 0.4505
Number of obs = 9,508
--------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
daily_m_mean |
gender_p | 0 (omitted)
peduy | .0042709 .0164781 0.26 0.795 -.0280256 .0365674
speduy | .0038929 .0179366 0.22 0.828 -.0312622 .0390481
ocpcate_dum2 | -.6382543 .1423337 -4.48 0.000 -.9172232 -.3592853
ocpcate_dum3 | -.7577436 .1963139 -3.86 0.000 -1.142512 -.3729753
ocpcate_dum4 | -.8749675 .1694062 -5.16 0.000 -1.206998 -.5429374
ocpcatesp_dum2 | .1403245 .226276 0.62 0.535 -.3031682 .5838173
ocpcatesp_dum3 | .5180557 .2937077 1.76 0.078 -.0576008 1.093712
ocpcatesp_dum4 | .4593349 .2422361 1.90 0.058 -.0154392 .9341089
_cons | 1.7019 1.04548 1.63 0.104 -.3472028 3.751003
---------------+----------------------------------------------------------------
daily_m_lnvar |
_cons | 1.968507 .0307041 64.11 0.000 1.908328 2.028686
---------------+----------------------------------------------------------------
daily_f_mean |
gender_p | 0 (omitted)
peduy | .0117149 .0106283 1.10 0.270 -.0091161 .032546
speduy | -.0058764 .0095221 -0.62 0.537 -.0245395 .0127866
ocpcate_dum2 | -.0844407 .1358409 -0.62 0.534 -.350684 .1818027
ocpcate_dum3 | .1370791 .1776663 0.77 0.440 -.2111405 .4852988
ocpcate_dum4 | .086198 .149824 0.58 0.565 -.2074517 .3798476
ocpcatesp_dum2 | .3252663 .0723523 4.50 0.000 .1834585 .4670742
ocpcatesp_dum3 | .1314536 .1096267 1.20 0.230 -.0834108 .3463179
ocpcatesp_dum4 | .2622342 .0977692 2.68 0.007 .0706101 .4538582
_cons | -.543665 .5717879 -0.95 0.342 -1.664349 .5770187
---------------+----------------------------------------------------------------
daily_f_lnvar |
_cons | .9294638 .0360856 25.76 0.000 .8587372 1.00019
--------------------------------------------------------------------------------
. test [daily_m_mean]peduy = [daily_f_mean]peduy
( 1) [daily_m_mean]peduy - [daily_f_mean]peduy = 0
chi2( 1) = 0.14
Prob > chi2 = 0.7042
. test [daily_m_mean]speduy = [daily_f_mean]speduy
( 1) [daily_m_mean]speduy - [daily_f_mean]speduy = 0
chi2( 1) = 0.23
Prob > chi2 = 0.6305
. test [daily_m_mean]ocpcate_dum2 = [daily_f_mean]ocpcate_dum2
( 1) [daily_m_mean]ocpcate_dum2 - [daily_f_mean]ocpcate_dum2 = 0
chi2( 1) = 7.92
Prob > chi2 = 0.0049
. test [daily_m_mean]ocpcate_dum3 = [daily_f_mean]ocpcate_dum3
( 1) [daily_m_mean]ocpcate_dum3 - [daily_f_mean]ocpcate_dum3 = 0
chi2( 1) = 11.42
Prob > chi2 = 0.0007
. test [daily_m_mean]ocpcate_dum4 = [daily_f_mean]ocpcate_dum4
( 1) [daily_m_mean]ocpcate_dum4 - [daily_f_mean]ocpcate_dum4 = 0
chi2( 1) = 18.06
Prob > chi2 = 0.0000
test [daily_m_mean]ocpcatesp_dum2 = [daily_f_mean]ocpcatesp_dum2
( 1) [daily_m_mean]ocpcatesp_dum2 - [daily_f_mean]ocpcatesp_dum2 = 0
chi2( 1) = 0.61
Prob > chi2 = 0.4363
. test [daily_m_mean]ocpcatesp_dum3 = [daily_f_mean]ocpcatesp_dum3
( 1) [daily_m_mean]ocpcatesp_dum3 - [daily_f_mean]ocpcatesp_dum3 = 0
chi2( 1) = 1.52
Prob > chi2 = 0.2175
. test [daily_m_mean]ocpcatesp_dum4 = [daily_f_mean]ocpcatesp_dum4
( 1) [daily_m_mean]ocpcatesp_dum4 - [daily_f_mean]ocpcatesp_dum4 = 0
chi2( 1) = 0.57
Prob > chi2 = 0.4505
Do the results of interaction terms and subgroup regression tell us the same thing?
I think I can get that, for example, the impact of spouse's occupation (ocpcatesp_dum) has no gender heterogeneity. However, in the Simultaneous results, the impact of spouse's occupation for fathers and mothers "look" quite different:
for mother:
ocpcatesp_dum2 | .1403245 .226276 0.62 0.535 -.3031682 .5838173
ocpcatesp_dum3 | .5180557 .2937077 1.76 0.078 -.0576008 1.093712
ocpcatesp_dum4 | .4593349 .2422361 1.90 0.058 -.0154392 .9341089
for father:
ocpcatesp_dum2 | .3252663 .0723523 4.50 0.000 .1834585 .4670742
ocpcatesp_dum3 | .1314536 .1096267 1.20 0.230 -.0834108 .3463179
ocpcatesp_dum4 | .2622342 .0977692 2.68 0.007 .0706101 .4538582
test results:
test [daily_m_mean]ocpcatesp_dum2 = [daily_f_mean]ocpcatesp_dum2
( 1) [daily_m_mean]ocpcatesp_dum2 - [daily_f_mean]ocpcatesp_dum2 = 0
chi2( 1) = 0.61
Prob > chi2 = 0.4363
. test [daily_m_mean]ocpcatesp_dum3 = [daily_f_mean]ocpcatesp_dum3
( 1) [daily_m_mean]ocpcatesp_dum3 - [daily_f_mean]ocpcatesp_dum3 = 0
chi2( 1) = 1.52
Prob > chi2 = 0.2175
. test [daily_m_mean]ocpcatesp_dum4 = [daily_f_mean]ocpcatesp_dum4
( 1) [daily_m_mean]ocpcatesp_dum4 - [daily_f_mean]ocpcatesp_dum4 = 0
chi2( 1) = 0.57
Prob > chi2 = 0.4505
ocpcatesp_dum2 | .1403245 .226276 0.62 0.535 -.3031682 .5838173
ocpcatesp_dum3 | .5180557 .2937077 1.76 0.078 -.0576008 1.093712
ocpcatesp_dum4 | .4593349 .2422361 1.90 0.058 -.0154392 .9341089
for father:
ocpcatesp_dum2 | .3252663 .0723523 4.50 0.000 .1834585 .4670742
ocpcatesp_dum3 | .1314536 .1096267 1.20 0.230 -.0834108 .3463179
ocpcatesp_dum4 | .2622342 .0977692 2.68 0.007 .0706101 .4538582
test results:
test [daily_m_mean]ocpcatesp_dum2 = [daily_f_mean]ocpcatesp_dum2
( 1) [daily_m_mean]ocpcatesp_dum2 - [daily_f_mean]ocpcatesp_dum2 = 0
chi2( 1) = 0.61
Prob > chi2 = 0.4363
. test [daily_m_mean]ocpcatesp_dum3 = [daily_f_mean]ocpcatesp_dum3
( 1) [daily_m_mean]ocpcatesp_dum3 - [daily_f_mean]ocpcatesp_dum3 = 0
chi2( 1) = 1.52
Prob > chi2 = 0.2175
. test [daily_m_mean]ocpcatesp_dum4 = [daily_f_mean]ocpcatesp_dum4
( 1) [daily_m_mean]ocpcatesp_dum4 - [daily_f_mean]ocpcatesp_dum4 = 0
chi2( 1) = 0.57
Prob > chi2 = 0.4505
Thank you so much.
Comment