Hello,
I think the coefficients directly from the zinb regression are hard to interpret, as I need to exponentiate it, and talk about how a variable affects the incidence-rate ratios.
Therefore, I decide to use margins, dydx(*), as it will tell me the effects of a variable on the number of counts, which is much easier to interpret.
However, I find it very bizarre that margins, dydx(*) even presents the results for child and camper. Child and camper are inside "inflate" only, and are therefore used to predict only the degenerate zeros, and are not used in the second stage negative binomial regression. How is Stata able to estimate the effects of child and camper on the number of counts then?
If child and camper are both in the "inflate" part and the negative binomial part, what exactly does the coefficient for them under margins, dydx(*) mean?
Thank you.
I think the coefficients directly from the zinb regression are hard to interpret, as I need to exponentiate it, and talk about how a variable affects the incidence-rate ratios.
Code:
. use https://www.stata-press.com/data/r17/fish,clear (Fictional fishing data) . zinb count persons livebait, inflate(child camper) Fitting constant-only model: Iteration 0: log likelihood = -519.33992 Iteration 1: log likelihood = -451.38662 Iteration 2: log likelihood = -444.49118 Iteration 3: log likelihood = -442.96272 Iteration 4: log likelihood = -442.71065 Iteration 5: log likelihood = -442.66718 Iteration 6: log likelihood = -442.6631 Iteration 7: log likelihood = -442.66299 Iteration 8: log likelihood = -442.66299 Fitting full model: Iteration 0: log likelihood = -442.66299 (not concave) Iteration 1: log likelihood = -432.83107 (not concave) Iteration 2: log likelihood = -426.32934 Iteration 3: log likelihood = -413.75019 Iteration 4: log likelihood = -403.09586 Iteration 5: log likelihood = -401.56013 Iteration 6: log likelihood = -401.54781 Iteration 7: log likelihood = -401.54776 Iteration 8: log likelihood = -401.54776 Zero-inflated negative binomial regression Number of obs = 250 Nonzero obs = 108 Zero obs = 142 Inflation model = logit LR chi2(2) = 82.23 Log likelihood = -401.5478 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- count | persons | .9742984 .1034938 9.41 0.000 .7714543 1.177142 livebait | 1.557523 .4124424 3.78 0.000 .7491503 2.365895 _cons | -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253 -------------+---------------------------------------------------------------- inflate | child | 3.185999 .7468551 4.27 0.000 1.72219 4.649808 camper | -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567 _cons | -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189 -------------+---------------------------------------------------------------- /lnalpha | .5110429 .1816816 2.81 0.005 .1549535 .8671323 -------------+---------------------------------------------------------------- alpha | 1.667029 .3028685 1.167604 2.380076 ------------------------------------------------------------------------------
Code:
. margins, dydx(*) Average marginal effects Number of obs = 250 Model VCE : OIM Expression : Predicted number of events, predict() dy/dx w.r.t. : persons livebait child camper ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- persons | 3.051303 .6943597 4.39 0.000 1.690383 4.412222 livebait | 4.877841 1.580321 3.09 0.002 1.780469 7.975213 child | -1.506576 .2890582 -5.21 0.000 -2.07312 -.9400329 camper | .9556555 .3077272 3.11 0.002 .3525213 1.55879 ------------------------------------------------------------------------------
Code:
. zinb count persons livebait child camper, inflate(child camper) Fitting constant-only model: Iteration 0: log likelihood = -519.33992 Iteration 1: log likelihood = -451.38662 Iteration 2: log likelihood = -444.49118 Iteration 3: log likelihood = -442.96272 Iteration 4: log likelihood = -442.71065 Iteration 5: log likelihood = -442.66718 Iteration 6: log likelihood = -442.6631 Iteration 7: log likelihood = -442.66299 Iteration 8: log likelihood = -442.66299 Fitting full model: Iteration 0: log likelihood = -442.66299 (not concave) Iteration 1: log likelihood = -431.0508 (not concave) Iteration 2: log likelihood = -421.09041 (not concave) Iteration 3: log likelihood = -420.10731 (not concave) Iteration 4: log likelihood = -414.28162 Iteration 5: log likelihood = -393.6678 Iteration 6: log likelihood = -388.95768 Iteration 7: log likelihood = -388.84164 Iteration 8: log likelihood = -388.82783 Iteration 9: log likelihood = -388.82573 Iteration 10: log likelihood = -388.82545 Iteration 11: log likelihood = -388.8254 Iteration 12: log likelihood = -388.82539 Zero-inflated negative binomial regression Number of obs = 250 Nonzero obs = 108 Zero obs = 142 Inflation model = logit LR chi2(4) = 107.68 Log likelihood = -388.8254 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- count | persons | 1.084071 .1078292 10.05 0.000 .8727292 1.295412 livebait | 1.556289 .4026417 3.87 0.000 .7671257 2.345452 child | -1.287611 .2350382 -5.48 0.000 -1.748277 -.8269444 camper | .2635901 .242317 1.09 0.277 -.2113426 .7385228 _cons | -2.95122 .468753 -6.30 0.000 -3.869959 -2.032481 -------------+---------------------------------------------------------------- inflate | child | 14.66326 564.7218 0.03 0.979 -1092.171 1121.498 camper | -14.47428 564.7236 -0.03 0.980 -1121.312 1092.364 _cons | -14.71499 564.723 -0.03 0.979 -1121.552 1092.122 -------------+---------------------------------------------------------------- /lnalpha | .4738543 .1625641 2.91 0.004 .1552345 .7924741 -------------+---------------------------------------------------------------- alpha | 1.606173 .261106 1.167932 2.208854 ------------------------------------------------------------------------------ . margins, dydx(*) Average marginal effects Number of obs = 250 Model VCE : OIM Expression : Predicted number of events, predict() dy/dx w.r.t. : persons livebait child camper ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- persons | 3.512221 .8344028 4.21 0.000 1.876821 5.14762 livebait | 5.042135 1.646428 3.06 0.002 1.815196 8.269075 child | -5.274766 42.49499 -0.12 0.901 -88.56342 78.01389 camper | 1.94288 42.48519 0.05 0.964 -81.32657 85.21233 ------------------------------------------------------------------------------
Thank you.
Comment