Dear StataList-ers!
Help! I need somebody!
I am applying a DID in multiple treatment groups and multiple time periods. I examine the before-after effect of certain policy changes (prostitution liberalization and prohibition) on sexual crime in treatment countries compared to controls.
I look at 2 subsamples – one consists of the countries that liberalized and the controls; the other one includes the countries that implemented a ban and the controls.
For the sake of simplicity, I’ll focus on the “liberalizing” sample. The key independent variable “Liberalization” is an indicator variable, which takes the value of one beginning in the year when a country liberalizes its policy, and zero otherwise. The dependent variable, “Rape Rate” measures the number of rape cases per 100,000 population recorded at the national level. Country and years fixed effects are included and standard errors are clustered by country. The baseline regression is:
To address the heterogeneity in the timing of treatment, I have also performed a bacon decomposition. However, the editor suggested that I implemented “something like Chaisemartin and co-authors.” I checked the relevant papers (de Chaisemartin, C and D'Haultfoeuille), and read the help for did_multiplegt. Following the examples, I am running:
Outcome:
Is this correct? I am not certain if this is what I should be doing. Moreover, I am not sure how to interpret the result? Please, help!
Here is also a data example:
Thank You in advance!
Help! I need somebody!
I am applying a DID in multiple treatment groups and multiple time periods. I examine the before-after effect of certain policy changes (prostitution liberalization and prohibition) on sexual crime in treatment countries compared to controls.
I look at 2 subsamples – one consists of the countries that liberalized and the controls; the other one includes the countries that implemented a ban and the controls.
For the sake of simplicity, I’ll focus on the “liberalizing” sample. The key independent variable “Liberalization” is an indicator variable, which takes the value of one beginning in the year when a country liberalizes its policy, and zero otherwise. The dependent variable, “Rape Rate” measures the number of rape cases per 100,000 population recorded at the national level. Country and years fixed effects are included and standard errors are clustered by country. The baseline regression is:
Code:
reg rape_rate prostitution_liberalization controls i.year i.country, robust cluster (country)
Code:
did_multiplegt raperate_2 country year prostitution_liberalization, placebo(1) breps(50) cluster (country) ereturn list scalar t_stat = e(effect_0)/e(se_effect_0) scalar p_val = 2*normal(-abs(t_stat)) di t_stat, p_val
Code:
Estimate SE LB CI UB CI N Switchers Effect_0 -.3168059 .2562758 -.8191065 .1854947 143 8 Placebo_1 .3024863 .5556721 -.786631 1.391604 142 8
Is this correct? I am not certain if this is what I should be doing. Moreover, I am not sure how to interpret the result? Please, help!
Here is also a data example:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long country int year byte prostitution_liberalization double(ln_population unemploymentrate gdp_cap) 5 2006 0 13.519813537597656 4.533 27169.9925579717 5 2007 0 13.538328170776367 3.9 31386.6326506534 5 2008 0 13.562336921691895 3.642 35390.7048833763 5 2009 0 13.588521957397461 5.417 32105.8159000782 5 2010 0 13.616010665893555 6.292 30818.4639574235 5 2011 0 13.640860557556152 7.908 32233.8394246573 5 2012 0 13.667023658752441 11.883 28984.9148053503 5 2013 0 13.671499252319336 15.917 27942.3166728809 5 2014 0 13.662359237670898 16.17 27400.802986104 5 2015 0 13.649465560913086 14.9 23212.2247018375 5 2016 0 13.651012420654297 12.7 . 5 2017 0 13.658625602722168 10.4 . 6 1990 0 16.15366554260254 2.3 3917.1598401020415 6 1991 0 16.148101806640625 2.3 2878.7192830636873 6 1992 0 16.14887237548828 3.3 3352.034161446508 6 1993 0 16.150146484375 4.3 3931.7444627475675 6 1994 0 16.150951385498047 4.3 4601.952312486726 6 1995 0 16.150869369506836 4 5788.150736797088 6 1996 0 16.14972496032715 3.9 6493.8633464010845 6 1997 0 16.148540496826172 4.8 5996.8338104398235 6 1998 0 16.14756965637207 6.479 6458.904501044037 6 1999 0 16.14664649963379 8.756 6307.698003777906 6 2000 0 16.145524978637695 8.824 6011.615220357014 6 2001 0 16.141033172607422 8.166 6609.205529860541 6 2002 0 16.13801383972168 7.313 8032.896612457674 6 2003 0 16.137176513671875 7.812 9773.117502512805 6 2004 0 16.137441635131836 8.321 11685.887240723441 6 2005 0 16.137786865234375 7.927 13346.176389885748 6 2006 0 16.140207290649414 7.148 15183.636054137549 6 2007 0 16.14320182800293 5.32 18373.64899769132 6 2008 0 16.1518611907959 4.392 22698.853957260453 6 2009 0 16.159791946411133 6.662 19741.597627982617 6 2010 0 16.16326904296875 7.279 19808.071091251848 6 2011 0 16.165620803833008 6.711 21717.4579392202 6 2012 0 16.167404174804687 6.978 19729.87051117635 6 2013 0 16.168420791625977 6.953 19916.019387372155 6 2014 0 16.168067932128906 6.1 19744.5586092159 6 2015 0 16.17052459716797 5 17715.61685230089 6 2016 0 16.1716365814209 3.5 . 6 2017 0 16.174476623535156 2.4 . 7 1990 0 15.451669692993164 7.167 26891.44163993726 7 1991 0 15.453821182250977 7.867 27011.38589104921 7 1992 0 15.45685863494873 8.608 29569.654526163493 7 1993 0 15.460433959960938 9.533 27597.971483377994 7 1994 0 15.463522911071777 7.733 29995.565218950873 7 1995 0 15.46718692779541 6.758 35351.38070653458 7 1996 0 15.473934173583984 6.317 35650.72434200985 7 1997 0 15.478511810302734 5.242 32835.92876661025 7 1998 0 15.482247352600098 4.883 33368.1548509045 7 1999 1 15.4857759475708 5.108 33440.80162006377 7 2000 1 15.488865852355957 4.317 30743.559173584672 7 2001 1 15.492460250854492 4.508 30751.64946038433 7 2002 1 15.496031761169434 4.642 33228.69290871008 7 2003 1 15.49885082244873 5.433 40458.77064028385 7 2004 1 15.501472473144531 5.517 46511.60457103468 7 2005 1 15.504019737243652 4.8 48799.820370324735 7 2006 1 15.50698184967041 3.9 52026.99311241551 7 2007 1 15.510590553283691 3.767 58487.04501164047 7 2008 1 15.515847206115723 3.458 64322.06664415255 7 2009 1 15.5223388671875 5.992 58163.293594306815 7 2010 1 15.526555061340332 7.475 58041.41122456013 7 2011 1 15.531221389770508 7.567 61753.660072180384 7 2012 1 15.534791946411133 7.542 58507.50020962721 7 2013 1 15.538745880126953 7.008 61191.19262604284 7 2014 1 15.543128967285156 6.533 62548.98501743713 7 2015 1 15.548884391784668 6.2 53012.99658350081 7 2016 1 15.557204246520996 6.1 . 7 2017 1 15.564536094665527 5.3 . 8 1990 0 14.2669677734375 .6 . 8 1991 0 14.265151023864746 1.5 . 8 1992 0 14.25690746307373 3.7 6782.14 8 1993 0 14.228483200073242 6.5 6971.181 8 1994 0 14.205491065979004 7.6 7414.93 8 1995 0 14.185745239257812 9.7 3044.3837091107976 8 1996 0 14.169816970825195 10 3352.7337408889102 8 1997 0 14.156256675720215 9.6 3619.9454956801105 8 1998 0 14.14702320098877 9.8 4052.292270590271 8 1999 0 14.137041091918945 12.2 4119.347393908136 8 2000 0 14.152874946594238 14.602 4070.032826987136 8 2001 0 14.146769523620605 13.009 4498.957027431462 8 2002 0 14.14013385772705 11.227 5308.347780593283 8 2003 0 14.134102821350098 10.342 7174.237414733685 8 2004 0 14.127580642700195 10.14 8850.465114847913 8 2005 0 14.122149467468262 8.031 10338.313223579884 8 2006 0 14.116133689880371 5.912 12595.410648630354 8 2007 0 14.110357284545898 4.592 16586.40520488473 8 2008 0 14.107015609741211 5.455 18094.548052783066 8 2009 0 14.104995727539063 13.549 14726.318278058745 8 2010 0 14.10315990447998 16.707 14638.604817345657 8 2011 0 14.100434303283691 12.325 17454.84342464351 8 2012 0 14.097086906433105 10.023 17421.89022273776 8 2013 0 14.093274116516113 8.628 19072.238517566937 8 2014 0 14.089969635009766 7.013 19949.581376697068 8 2015 0 14.089248657226563 6.2 17155.87417599953 8 2016 0 14.090106964111328 6.4 . 8 2017 0 14.090106964111328 5.7 . 9 1990 0 15.419812202453613 3.2 28380.548911274975 9 1991 0 15.424644470214844 6.606 25503.215209010872 9 1992 0 15.430731773376465 11.725 22337.48712369123 9 1993 0 15.435884475708008 16.357 17617.030438665395 end label values country country label def country 5 "Cyprus", modify label def country 6 "CzechRepublic", modify label def country 7 "Denmark", modify label def country 8 "Estonia", modify label def country 9 "Finland", modify
Thank You in advance!
Comment