Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • xtoverid vs mundlak for deciding on fixed vs random effects

    Hi,

    few days ago I opened a thread asking for some advice regarding my model specification where Carlo Lazzaro gave very useful feedback. The thread can be found here (with example data).

    Until know I was pretty sure that -fe- would be the right approach as 99% of the research done on my research question applies -fe-.
    Just to be sure I spend the last few days playing around with some tests for deciding which model to choose.

    As I can assume to have heteroskedastic and intragroup correlation I cannot really rely on the Hausman test and followed the advice to use the command -xtoverid- first, which gave me the following output:

    Input:
    Code:
    . xtreg Acq_CAR_1_1_ES2 CFO_PaySlice CFO_No_Boardsitze CFO_No_Deals CFO_Perc_Own_Dir CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_S
    > tructure Deal_No_Bidders Deal_Div_FF12 Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals, re
    
    Random-effects GLS regression                   Number of obs     =      2,521
    Group variable: Acq_ID                          Number of groups  =        980
    
    R-squared:                                      Obs per group:
         Within  = 0.0212                                         min =          1
         Between = 0.0521                                         avg =        2.6
         Overall = 0.0331                                         max =         75
    
                                                    Wald chi2(20)     =          .
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
    
    -----------------------------------------------------------------------------------
      Acq_CAR_1_1_ES2 | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
         CFO_PaySlice |   .0106131   .0198141     0.54   0.592    -.0282218    .0494481
    CFO_No_Boardsitze |  -.0000494    .001944    -0.03   0.980    -.0038597    .0037609
         CFO_No_Deals |  -.0002787   .0006399    -0.44   0.663    -.0015329    .0009754
     CFO_Perc_Own_Dir |  -.0000603   .0002286    -0.26   0.792    -.0005082    .0003877
            CFO_Board |   .0060153   .0070377     0.85   0.393    -.0077783     .019809
              CFO_Age |   1.08e-06   .0002584     0.00   0.997    -.0005054    .0005076
           CFO_Gender |   .0039131    .005748     0.68   0.496    -.0073527     .015179
              CFO_MBA |  -.0054712   .0032979    -1.66   0.097    -.0119349    .0009926
              CFO_CPA |   .0008035   .0032792     0.25   0.806    -.0056236    .0072305
           CFO_Tenure |  -9.74e-07   1.48e-06    -0.66   0.511    -3.88e-06    1.93e-06
           Deal_Value |  -1.81e-12   4.01e-13    -4.51   0.000    -2.60e-12   -1.02e-12
          Targ_Listed |  -.0133341   .0037269    -3.58   0.000    -.0206386   -.0060295
       Deal_Structure |   .0000302    .000617     0.05   0.961     -.001179    .0012394
      Deal_No_Bidders |    .023375   .0123418     1.89   0.058    -.0008145    .0475645
        Deal_Div_FF12 |  -.0007084   .0032532    -0.22   0.828    -.0070846    .0056678
         Acq_MktValue |   3.92e-11   4.11e-11     0.95   0.341    -4.14e-11    1.20e-10
         Acq_Leverage |   .0058658   .0080689     0.73   0.467    -.0099489    .0216806
              Acq_ROA |   .0101078   .0252952     0.40   0.689    -.0394698    .0596855
    Acq_Cash_holdings |   -.019994   .0094826    -2.11   0.035    -.0385794   -.0014085
          Acq_TobinsQ |  -.0013971   .0003883    -3.60   0.000    -.0021581    -.000636
              Acq_FCF |   .0430743   .0285144     1.51   0.131    -.0128129    .0989614
         Acq_No_Deals |  -.0004628   .0002621    -1.77   0.077    -.0009765    .0000508
                _cons |  -.0189153   .0196203    -0.96   0.335    -.0573704    .0195397
    ------------------+----------------------------------------------------------------
              sigma_u |  .03276371
              sigma_e |  .06290979
                  rho |  .21336491   (fraction of variance due to u_i)
    -----------------------------------------------------------------------------------
    
    . xtoverid, robust cluster(Acq_ID)
    
    Test of overidentifying restrictions: fixed vs random effects
    Cross-section time-series model: xtreg re  robust cluster(Acq_ID)
    Sargan-Hansen statistic  31.518  Chi-sq(20)   P-value = 0.0487
    As done by nearly every single paper on my research topic I winsorized all variables at the 1st and 99th percentile values (even though knowing there is a hard debate on winsorizing data). However, after doing so, the result of -xtoverid- changed substantially:

    Code:
    . xtoverid, robust cluster(Acq_ID)
    
    Test of overidentifying restrictions: fixed vs random effects
    Cross-section time-series model: xtreg re  robust cluster(Acq_ID)
    Sargan-Hansen statistic  23.705  Chi-sq(20)   P-value = 0.2555
    I was even more confused after applying the mundlak approach (on the winsorized data):
    Code:
    mundlak Acq_CAR_1_1_ES2 CFO_PaySlice CFO_No_Boardsitze CFO_No_Deals CFO_Perc_Own_Dir CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals
    estimates replay Mundlak
    test
    Here, the Prob > chi2 = 0.0002, highly suggesting that -fe- is the way to go.

    However, I am not sure whether the mundlak approach as done here accounts for heteroskedastic and intragroup correlation. As I couldn't find a -robust- option in the help file I tried to rebuild the approach following this post: https://blog.stata.com/2015/10/29/fi...dlak-approach/

    Code:
    //Mundlak manually
    bysort Acq_ID: egen mean_x2 = mean(CFO_PaySlice)
    bysort Acq_ID: egen mean_x3 = mean(CFO_No_Boardsitze)
    bysort Acq_ID: egen mean_x4 = mean(CFO_No_Deals)
    bysort Acq_ID: egen mean_x5 = mean(CFO_Perc_Own_Dir)
    bysort Acq_ID: egen mean_x6 = mean(CFO_Board)
    bysort Acq_ID: egen mean_x7 = mean(CFO_Age)
    bysort Acq_ID: egen mean_x8 = mean(CFO_Gender)
    bysort Acq_ID: egen mean_x9 = mean(CFO_MBA)
    bysort Acq_ID: egen mean_x10 = mean(CFO_CPA)
    bysort Acq_ID: egen mean_x11 = mean(CFO_Tenure)
    bysort Acq_ID: egen mean_x12 = mean(Deal_Value)
    bysort Acq_ID: egen mean_x13 = mean(Targ_Listed)
    bysort Acq_ID: egen mean_x14 = mean(Deal_Structure)
    bysort Acq_ID: egen mean_x15 = mean(Deal_No_Bidders)
    bysort Acq_ID: egen mean_x16 = mean(Deal_Div_FF12)
    bysort Acq_ID: egen mean_x17 = mean(Acq_MktValue)
    bysort Acq_ID: egen mean_x18 = mean(Acq_Leverage)
    bysort Acq_ID: egen mean_x19 = mean(Acq_ROA)
    bysort Acq_ID: egen mean_x20 = mean(Acq_Cash_holdings)
    bysort Acq_ID: egen mean_x21 = mean(Acq_TobinsQ)
    bysort Acq_ID: egen mean_x22 = mean(Acq_FCF)
    bysort Acq_ID: egen mean_x23 = mean(Acq_No_Deals)
    
    quietly xtreg Acq_CAR_1_1_ES2 CFO_PaySlice CFO_No_Boardsitze CFO_No_Deals CFO_Perc_Own_Dir CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals mean_x*, vce(cluster Acq_ID) 
    
    estimates store mundlak
    
    test mean_x2 mean_x3 mean_x4 mean_x5 mean_x6 mean_x7 mean_x8 mean_x9 mean_x10 mean_x11 mean_x12 mean_x13 mean_x14 mean_x15 mean_x16 mean_x17 mean_x18 mean_x19 mean_x20 mean_x21 mean_x22 mean_x23
    Doing so results in Prob > chi2 = 0.3076 which is again far away from the results I got above.

    My questions would be:
    1. Is it the case that xtoverid is very sensitive to outliers? (Without seeing my entire dataset this question may have no obvious answer)
    2. Do you have any ideas on why the results between xtoverid and mundlak differ so much?
    3. What did I do wrong when applying the manual mundlak approach that would explain the huge difference between both mundlak approaches?

    Thanks in advance

  • #2
    Marc:
    1) I think that the community-contributed module-xtoverid- sensitivity vs. (the so called) outliers is not an issue here;
    2) -test- after the outcome of the community-contributed module -mundlak- tests whether the joint statistical significance of the regressors differs from zero. But this result should not be interpreted like a comparison between -xtreg,fe- and -xtreg,re-, whereas a test of the joint statistical significance of the coefficients of panel-specific mean is actually a test to support the choice between -fe- and -re- (the null is -re- is the way to go);
    3) I'm under the impression that you computed themean of all the predictors, no matter if they are time-varying or not.
    Conversely, only the panel-specific mean of time-varying predictors (wiyhin groups) should be calculated, as in the following toy-example:
    Code:
    . webuse nlswork, clear
    . xtset idcode year
    . mundlak ln_wage age south race
    The variable race does not vary sufficiently within groups and will not be used to create additional regressors.
    0% of the total variance in race is within groups.
    
    +------------------------------------------------+
    |             Variable |     RE     |  Mundlak   |
    |----------------------+------------+------------|
    |                  age |      0.019 |      0.018 |
    |                south |     -0.124 |     -0.077 |
    |                 race |     -0.067 |     -0.052 |
    |            mean__age |            |      0.005 |
    |          mean__south |            |     -0.107 |
    |                _cons |      1.254 |      1.119 |
    |----------------------+------------+------------|
    |                    N |      28502 |      28502 |
    |                  N_g |   4710.000 |   4710.000 |
    |                g_min |      1.000 |      1.000 |
    |                g_avg |      6.051 |      6.051 |
    |                g_max |     15.000 |     15.000 |
    |                  rho |      0.582 |      0.582 |
    |                 rmse |      0.303 |      0.303 |
    |                 chi2 |   3448.711 |   3516.240 |
    |                    p |      0.000 |      0.000 |
    |                 df_m |      3.000 |      5.000 |
    |                sigma |      0.469 |      0.469 |
    |              sigma_u |      0.358 |      0.358 |
    |              sigma_e |      0.303 |      0.303 |
    |                 r2_w |      0.104 |      0.104 |
    |                 r2_o |      0.121 |      0.125 |
    |                 r2_b |      0.134 |      0.136 |
    +------------------------------------------------+
    
    . estimates replay Mundlak
    
    ---------------------------------------------------------------------------------------------------------------------------------------------
    Model Mundlak
    ---------------------------------------------------------------------------------------------------------------------------------------------
    
    Random-effects GLS regression                   Number of obs     =     28,502
    Group variable: idcode                          Number of groups  =      4,710
    
    R-squared:                                      Obs per group:
         Within  = 0.1044                                         min =          1
         Between = 0.1360                                         avg =        6.1
         Overall = 0.1247                                         max =         15
    
                                                    Wald chi2(5)      =    3516.24
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
         ln_wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             age |   .0181924   .0003467    52.47   0.000     .0175129     .018872
           south |  -.0774963   .0112291    -6.90   0.000    -.0995049   -.0554877
            race |  -.0524556    .011994    -4.37   0.000    -.0759634   -.0289478
       mean__age |   .0053571   .0011377     4.71   0.000     .0031272    .0075871
     mean__south |  -.1072222   .0167917    -6.39   0.000    -.1401333    -.074311
           _cons |   1.118915   .0356986    31.34   0.000     1.048947    1.188883
    -------------+----------------------------------------------------------------
         sigma_u |  .35790685
         sigma_e |  .30322383
             rho |  .58214937   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    
    .
    . test
    
     ( 1)  age = 0
     ( 2)  south = 0
     ( 3)  race = 0
     ( 4)  mean__age = 0
     ( 5)  mean__south = 0
    
               chi2(  5) = 3516.24
             Prob > chi2 =    0.0000
    . bysort idcode: egen mean_age=mean(age)
    . bysort idcode: egen mean_south=mean(south)
    . xtreg ln_wage age south race mean_age mean_south
    
    Random-effects GLS regression                   Number of obs     =     28,502
    Group variable: idcode                          Number of groups  =      4,710
    
    R-squared:                                      Obs per group:
         Within  = 0.1044                                         min =          1
         Between = 0.1361                                         avg =        6.1
         Overall = 0.1247                                         max =         15
    
                                                    Wald chi2(5)      =    3516.59
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
         ln_wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             age |   .0181906   .0003467    52.47   0.000      .017511    .0188701
           south |  -.0774323   .0112289    -6.90   0.000    -.0994405    -.055424
            race |  -.0524406   .0119927    -4.37   0.000     -.075946   -.0289353
        mean_age |   .0053784   .0011378     4.73   0.000     .0031483    .0076084
      mean_south |  -.1073872   .0167931    -6.39   0.000     -.140301   -.0744733
           _cons |   1.118379   .0356965    31.33   0.000     1.048415    1.188343
    -------------+----------------------------------------------------------------
         sigma_u |  .35786077
         sigma_e |  .30322383
             rho |  .58208672   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    
    .test mean_age mean_south
    
     ( 1)  mean_age = 0
     ( 2)  mean_south = 0
    
               chi2(  2) =   60.74
             Prob > chi2 =    0.0000
    
    that points you out to -fe-.
    
    . xtoverid
    
    Test of overidentifying restrictions: fixed vs random effects
    Cross-section time-series model: xtreg re  
    Sargan-Hansen statistic   2.616  Chi-sq(2)    P-value = 0.2703
    that points you out to -re-, instead.

    Set aside some minor difference probably due to degrees of freedom, the community-contributed module -mundlak- and its manual computation via -xtreg,re- give back the same results.
    In addition, I'm under the impression that the opposite indications provided by
    Code:
    .test mean_age mean_south
    and -xtoverid- are due to their different nulls.

    See also:
    1) https://blog.stata.com/2015/10/29/fi...dlak-approach/
    2) https://www.statalist.org/forums/for...-test-xtoverid (unfortunately left unreplied).
    Last edited by Carlo Lazzaro; 09 Mar 2022, 11:43.
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      Thank you so much Carlo.

      Regarding the mundlak approach:
      You are right, I included all predictors as it seems that there aren't any predictors in my model that are not time invariant. If I run

      Code:
      mundlak Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq_MktValue Acq_Leverage Deal_Form Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals
      The regression is done using all predictors and no predictor is excluded because of limited variation.
      Note that some characteristics of the CFO (all variables with the CFO-prefix, like CFO_Age for example) do of course vary over time. However, my panel id is based on the firm level, e.g. the ID of the Acquiring firm rather than on the CFO ID. I assume that variables that vary over time but are not related to the groups formed by the panel id do not matter here?

      Regarding xtoverid:
      I wanted to include time fixed effects in my -xtreg- before running -xtoverid.
      Code:
      . xi: xtreg Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq
      > _MktValue Acq_Leverage Deal_Form Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals i.Deal_Year_Ann, re vce(robust)
      i.Deal_Year_Ann   _IDeal_Year_1996-2018(naturally coded; _IDeal_Year_1996 omitted)
      note: _IDeal_Year_1997 omitted because of collinearity.
      note: _IDeal_Year_1998 omitted because of collinearity.
      note: _IDeal_Year_2018 omitted because of collinearity.
      
      Random-effects GLS regression                   Number of obs     =      2,521
      Group variable: Acq_ID                          Number of groups  =        980
      
      R-squared:                                      Obs per group:
           Within  = 0.0331                                         min =          1
           Between = 0.0824                                         avg =        2.6
           Overall = 0.0578                                         max =         75
      
                                                      Wald chi2(37)     =          .
      corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
      
                                          (Std. err. adjusted for 980 clusters in Acq_ID)
      -----------------------------------------------------------------------------------
                        |               Robust
        Acq_CAR_1_1_ES2 | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
      ------------------+----------------------------------------------------------------
         CFO_Power_FF30 |    .001808   .0024055     0.75   0.452    -.0029066    .0065227
              CFO_Board |   .0074332    .005969     1.25   0.213    -.0042657    .0191322
                CFO_Age |  -.0001828   .0002004    -0.91   0.362    -.0005755    .0002099
             CFO_Gender |   .0024159   .0041606     0.58   0.561    -.0057387    .0105704
                CFO_MBA |  -.0034547   .0028072    -1.23   0.218    -.0089567    .0020473
                CFO_CPA |     .00105   .0026528     0.40   0.692    -.0041495    .0062495
             CFO_Tenure |  -3.29e-07   1.25e-06    -0.26   0.793    -2.78e-06    2.13e-06
             Deal_Value |  -5.20e-12   9.40e-13    -5.53   0.000    -7.04e-12   -3.36e-12
            Targ_Listed |  -.0081896   .0045031    -1.82   0.069    -.0170155    .0006364
         Deal_Structure |  -.0004321   .0005938    -0.73   0.467    -.0015958    .0007317
        Deal_No_Bidders |   .0196598   .0098837     1.99   0.047     .0002882    .0390314
          Deal_Div_FF12 |   -.000674   .0027561    -0.24   0.807    -.0060759    .0047279
           Acq_MktValue |   8.46e-11   4.57e-11     1.85   0.064    -4.94e-12    1.74e-10
           Acq_Leverage |   .0092253   .0071477     1.29   0.197     -.004784    .0232346
              Deal_Form |   .0000862   .0005985     0.14   0.885    -.0010867    .0012592
                Acq_ROA |   .0115285   .0261304     0.44   0.659    -.0396862    .0627432
      Acq_Cash_holdings |  -.0213693   .0089444    -2.39   0.017       -.0389   -.0038386
            Acq_TobinsQ |  -.0011953   .0007709    -1.55   0.121    -.0027062    .0003156
                Acq_FCF |   .0367299   .0280274     1.31   0.190    -.0182028    .0916627
           Acq_No_Deals |  -.0004317   .0002551    -1.69   0.091    -.0009317    .0000683
       _IDeal_Year_1997 |          0  (omitted)
       _IDeal_Year_1998 |          0  (omitted)
       _IDeal_Year_1999 |  -.0023165   .0095092    -0.24   0.808    -.0209541    .0163212
       _IDeal_Year_2000 |  -.0116893   .0091611    -1.28   0.202    -.0296448    .0062662
       _IDeal_Year_2001 |  -.0047484   .0092863    -0.51   0.609    -.0229492    .0134524
       _IDeal_Year_2002 |   .0063417   .0090103     0.70   0.482    -.0113181    .0240016
       _IDeal_Year_2003 |  -.0054734   .0080517    -0.68   0.497    -.0212545    .0103077
       _IDeal_Year_2004 |  -.0036195   .0074055    -0.49   0.625    -.0181341    .0108951
       _IDeal_Year_2005 |   .0011512    .007143     0.16   0.872    -.0128489    .0151512
       _IDeal_Year_2006 |  -.0037803   .0070829    -0.53   0.594    -.0176624    .0101019
       _IDeal_Year_2007 |   .0030923   .0069938     0.44   0.658    -.0106153       .0168
       _IDeal_Year_2008 |  -.0038094   .0079455    -0.48   0.632    -.0193823    .0117635
       _IDeal_Year_2009 |   .0034736   .0080263     0.43   0.665    -.0122577    .0192049
       _IDeal_Year_2010 |   .0093232   .0073129     1.27   0.202    -.0050099    .0236563
       _IDeal_Year_2011 |  -.0006875    .007698    -0.09   0.929    -.0157753    .0144003
       _IDeal_Year_2012 |   .0070831   .0070522     1.00   0.315     -.006739    .0209052
       _IDeal_Year_2013 |   .0125899   .0073609     1.71   0.087    -.0018372    .0270169
       _IDeal_Year_2014 |    .011291   .0075079     1.50   0.133    -.0034243    .0260063
       _IDeal_Year_2015 |   .0033903   .0074971     0.45   0.651    -.0113037    .0180843
       _IDeal_Year_2016 |   -.004654   .0075924    -0.61   0.540    -.0195348    .0102268
       _IDeal_Year_2017 |   .0016655   .0071788     0.23   0.817    -.0124047    .0157358
       _IDeal_Year_2018 |          0  (omitted)
                  _cons |  -.0066082   .0164206    -0.40   0.687     -.038792    .0255756
      ------------------+----------------------------------------------------------------
                sigma_u |  .02611584
                sigma_e |  .05196385
                    rho |  .20165021   (fraction of variance due to u_i)
      -----------------------------------------------------------------------------------
      
      . xtoverid
      o. operator not allowed
      r(101);
      I had a look at this thread: https://www.statalist.org/forums/for...ctor-variables
      where you gave the advise to drop the omitted variables, which would be observations for the years 1996, 1997 and 2018 in my case.

      However, if I run the xtreg without xi:, no time fixed effect variable seems to be omitted:
      Code:
      . xtreg Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq_Mkt
      > Value Acq_Leverage Deal_Form Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals i.Deal_Year_Ann, re vce(robust)
      
      Random-effects GLS regression                   Number of obs     =      2,521
      Group variable: Acq_ID                          Number of groups  =        980
      
      R-squared:                                      Obs per group:
           Within  = 0.0331                                         min =          1
           Between = 0.0824                                         avg =        2.6
           Overall = 0.0578                                         max =         75
      
                                                      Wald chi2(37)     =          .
      corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
      
                                          (Std. err. adjusted for 980 clusters in Acq_ID)
      -----------------------------------------------------------------------------------
                        |               Robust
        Acq_CAR_1_1_ES2 | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
      ------------------+----------------------------------------------------------------
         CFO_Power_FF30 |    .001808   .0024055     0.75   0.452    -.0029066    .0065227
              CFO_Board |   .0074332    .005969     1.25   0.213    -.0042657    .0191322
                CFO_Age |  -.0001828   .0002004    -0.91   0.362    -.0005755    .0002099
             CFO_Gender |   .0024159   .0041606     0.58   0.561    -.0057387    .0105704
                CFO_MBA |  -.0034547   .0028072    -1.23   0.218    -.0089567    .0020473
                CFO_CPA |     .00105   .0026528     0.40   0.692    -.0041495    .0062495
             CFO_Tenure |  -3.29e-07   1.25e-06    -0.26   0.793    -2.78e-06    2.13e-06
             Deal_Value |  -5.20e-12   9.40e-13    -5.53   0.000    -7.04e-12   -3.36e-12
            Targ_Listed |  -.0081896   .0045031    -1.82   0.069    -.0170155    .0006364
         Deal_Structure |  -.0004321   .0005938    -0.73   0.467    -.0015958    .0007317
        Deal_No_Bidders |   .0196598   .0098837     1.99   0.047     .0002882    .0390314
          Deal_Div_FF12 |   -.000674   .0027561    -0.24   0.807    -.0060759    .0047279
           Acq_MktValue |   8.46e-11   4.57e-11     1.85   0.064    -4.94e-12    1.74e-10
           Acq_Leverage |   .0092253   .0071477     1.29   0.197     -.004784    .0232346
              Deal_Form |   .0000862   .0005985     0.14   0.885    -.0010867    .0012592
                Acq_ROA |   .0115285   .0261304     0.44   0.659    -.0396862    .0627432
      Acq_Cash_holdings |  -.0213693   .0089444    -2.39   0.017       -.0389   -.0038386
            Acq_TobinsQ |  -.0011953   .0007709    -1.55   0.121    -.0027062    .0003156
                Acq_FCF |   .0367299   .0280274     1.31   0.190    -.0182028    .0916627
           Acq_No_Deals |  -.0004317   .0002551    -1.69   0.091    -.0009317    .0000683
                        |
          Deal_Year_Ann |
                  2000  |  -.0093729    .009399    -1.00   0.319    -.0277947    .0090489
                  2001  |   -.002432   .0104022    -0.23   0.815      -.02282     .017956
                  2002  |   .0086582   .0096088     0.90   0.368    -.0101746     .027491
                  2003  |  -.0031569   .0095025    -0.33   0.740    -.0217815    .0154677
                  2004  |   -.001303   .0087512    -0.15   0.882    -.0184551     .015849
                  2005  |   .0034676   .0084992     0.41   0.683    -.0131906    .0201259
                  2006  |  -.0014638   .0087238    -0.17   0.867    -.0185622    .0156346
                  2007  |   .0054088   .0083891     0.64   0.519    -.0110335     .021851
                  2008  |  -.0014929   .0094094    -0.16   0.874    -.0199351    .0169492
                  2009  |   .0057901   .0095773     0.60   0.545    -.0129811    .0245612
                  2010  |   .0116397   .0089744     1.30   0.195    -.0059499    .0292293
                  2011  |    .001629   .0089323     0.18   0.855     -.015878    .0191359
                  2012  |   .0093995   .0090358     1.04   0.298    -.0083104    .0271094
                  2013  |   .0149063   .0093088     1.60   0.109    -.0033385    .0331512
                  2014  |   .0136075   .0091246     1.49   0.136    -.0042765    .0314914
                  2015  |   .0057068   .0095264     0.60   0.549    -.0129647    .0243783
                  2016  |  -.0023376   .0091356    -0.26   0.798    -.0202431    .0155679
                  2017  |    .003982    .008615     0.46   0.644    -.0129031    .0208671
                  2018  |   .0023165   .0095092     0.24   0.808    -.0163212    .0209541
                        |
                  _cons |  -.0089246   .0175951    -0.51   0.612    -.0434103    .0255611
      ------------------+----------------------------------------------------------------
                sigma_u |  .02611584
                sigma_e |  .05196385
                    rho |  .20165021   (fraction of variance due to u_i)
      -----------------------------------------------------------------------------------
      In this case however, the years 1996-1999 aren't display in the output. This doesn't seem to have an effect on the analysis itself, as the coefficients and everything else is the same in both analyses. I was just wondering what this behaviour might explain.

      Unfortunately, dropping the omitted time fixed effects variables won't work in my case due to another weird behaviour which I cannot explain:

      If I am about to drop observations for which the time fixed effects are omitted due to collinearity and rerun the first command, there will be another time fixed effect variable that is omitted due to collinearity:

      Code:
      . drop if Deal_Year_Ann == 1997 | Deal_Year_Ann == 1998 | Deal_Year_Ann == 2018
      (438 observations deleted)
      
      . xi: xtreg Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA CFO_Tenure Deal_Value Targ_Listed Deal_Structure Deal_No_Bidders Deal_Div_FF12 Acq
      > _MktValue Acq_Leverage Deal_Form Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals i.Deal_Year_Ann, re vce(robust)
      i.Deal_Year_Ann   _IDeal_Year_1996-2017(naturally coded; _IDeal_Year_1996 omitted)
      note: _IDeal_Year_2017 omitted because of collinearity.
      
      Random-effects GLS regression                   Number of obs     =      2,408
      Group variable: Acq_ID                          Number of groups  =        936
      
      R-squared:                                      Obs per group:
           Within  = 0.0331                                         min =          1
           Between = 0.0758                                         avg =        2.6
           Overall = 0.0573                                         max =         73
      
                                                      Wald chi2(36)     =          .
      corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
      
                                          (Std. err. adjusted for 936 clusters in Acq_ID)
      -----------------------------------------------------------------------------------
                        |               Robust
        Acq_CAR_1_1_ES2 | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
      ------------------+----------------------------------------------------------------
         CFO_Power_FF30 |   .0027338   .0024409     1.12   0.263    -.0020502    .0075178
              CFO_Board |   .0072027   .0060893     1.18   0.237     -.004732    .0191375
                CFO_Age |  -.0002443   .0002028    -1.20   0.228    -.0006417    .0001532
             CFO_Gender |    .001463   .0041689     0.35   0.726    -.0067079    .0096339
                CFO_MBA |  -.0018182   .0028939    -0.63   0.530    -.0074901    .0038538
                CFO_CPA |   .0017687   .0027195     0.65   0.515    -.0035614    .0070989
             CFO_Tenure |  -5.30e-07   1.28e-06    -0.41   0.680    -3.04e-06    1.98e-06
             Deal_Value |  -5.31e-12   9.40e-13    -5.64   0.000    -7.15e-12   -3.46e-12
            Targ_Listed |  -.0065705   .0045815    -1.43   0.152      -.01555     .002409
         Deal_Structure |  -.0004425   .0006015    -0.74   0.462    -.0016214    .0007365
        Deal_No_Bidders |   .0195866   .0099815     1.96   0.050     .0000231      .03915
          Deal_Div_FF12 |   .0003438   .0028366     0.12   0.904    -.0052158    .0059034
           Acq_MktValue |   9.04e-11   4.71e-11     1.92   0.055    -1.97e-12    1.83e-10
           Acq_Leverage |   .0076569   .0073417     1.04   0.297    -.0067325    .0220464
              Deal_Form |    .000044    .000608     0.07   0.942    -.0011477    .0012357
                Acq_ROA |   .0172938   .0270189     0.64   0.522    -.0356622    .0702498
      Acq_Cash_holdings |  -.0240365   .0091197    -2.64   0.008    -.0419108   -.0061623
            Acq_TobinsQ |   -.001308   .0007822    -1.67   0.095    -.0028411    .0002252
                Acq_FCF |   .0313867   .0288949     1.09   0.277    -.0252463    .0880197
           Acq_No_Deals |  -.0004193   .0002569    -1.63   0.103    -.0009227    .0000842
       _IDeal_Year_1999 |  -.0033278   .0086836    -0.38   0.702    -.0203474    .0136919
       _IDeal_Year_2000 |  -.0124442   .0084198    -1.48   0.139    -.0289467    .0040582
       _IDeal_Year_2001 |   -.005775   .0084946    -0.68   0.497    -.0224241    .0108741
       _IDeal_Year_2002 |   .0051383   .0080711     0.64   0.524    -.0106807    .0209573
       _IDeal_Year_2003 |  -.0062732   .0073458    -0.85   0.393    -.0206708    .0081243
       _IDeal_Year_2004 |  -.0042337   .0064274    -0.66   0.510     -.016831    .0083637
       _IDeal_Year_2005 |  -.0000707   .0061655    -0.01   0.991    -.0121547    .0120134
       _IDeal_Year_2006 |  -.0047363   .0060393    -0.78   0.433    -.0165732    .0071006
       _IDeal_Year_2007 |   .0018403   .0060449     0.30   0.761    -.0100076    .0136882
       _IDeal_Year_2008 |   -.004806    .007488    -0.64   0.521    -.0194823    .0098702
       _IDeal_Year_2009 |   .0025686   .0069343     0.37   0.711    -.0110224    .0161596
       _IDeal_Year_2010 |   .0086976   .0063295     1.37   0.169    -.0037079    .0211032
       _IDeal_Year_2011 |  -.0017222   .0064791    -0.27   0.790    -.0144211    .0109767
       _IDeal_Year_2012 |     .00604   .0059733     1.01   0.312    -.0056675    .0177475
       _IDeal_Year_2013 |     .01136   .0063353     1.79   0.073     -.001057     .023777
       _IDeal_Year_2014 |   .0103819   .0066491     1.56   0.118    -.0026501    .0234138
       _IDeal_Year_2015 |   .0030478   .0071141     0.43   0.668    -.0108955    .0169911
       _IDeal_Year_2016 |  -.0064781   .0065577    -0.99   0.323    -.0193309    .0063747
       _IDeal_Year_2017 |          0  (omitted)
                  _cons |  -.0021373   .0169743    -0.13   0.900    -.0354062    .0311317
      ------------------+----------------------------------------------------------------
                sigma_u |  .02685838
                sigma_e |  .05160516
                    rho |  .21314221   (fraction of variance due to u_i)
      -----------------------------------------------------------------------------------
      Do you have any ideas on how to proceed or how to explain this behaviour?

      Again, I really appreciate your help. Thank you.

      Comment


      • #4
        Marc:
        1)
        I assume that variables that vary over time but are not related to the groups formed by the panel id do not matter here?
        It depends if they are regressors (therefore they matter) or controls (tehrefore they don't).
        2)
        Regarding xtoverid:
        I wanted to include time fixed effects in my -xtreg- before running -xtoverid.
        I was not able to replicate your problem (check your dataset as far as year-related categorical variablea were created):
        Code:
        . use "https://www.stata-press.com/data/r17/nlswork.dta"
        (National Longitudinal Survey of Young Women, 14-24 years old in 1968)
        
        . xtreg ln_wage age i.year
        
        Random-effects GLS regression                   Number of obs     =     28,510
        Group variable: idcode                          Number of groups  =      4,710
        
        R-squared:                                      Obs per group:
             Within  = 0.1060                                         min =          1
             Between = 0.0918                                         avg =        6.1
             Overall = 0.0807                                         max =         15
        
                                                        Wald chi2(15)     =    3253.70
        corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
        
        ------------------------------------------------------------------------------
             ln_wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
        -------------+----------------------------------------------------------------
                 age |   .0137208   .0018898     7.26   0.000     .0100169    .0174247
                     |
                year |
                 69  |   .0744312    .012506     5.95   0.000     .0499199    .0989425
                 70  |   .0453659   .0120494     3.77   0.000     .0217496    .0689822
                 71  |   .0819949   .0125373     6.54   0.000     .0574222    .1065676
                 72  |   .0827461   .0136074     6.08   0.000      .056076    .1094162
                 73  |   .0840751   .0143598     5.85   0.000     .0559304    .1122198
                 75  |   .0707387   .0167492     4.22   0.000     .0379108    .1035665
                 77  |   .1032639   .0197156     5.24   0.000      .064622    .1419059
                 78  |   .1279039   .0214888     5.95   0.000     .0857866    .1700211
                 80  |    .108871   .0247933     4.39   0.000      .060277     .157465
                 82  |    .098831   .0280824     3.52   0.000     .0437906    .1538714
                 83  |   .1127655   .0298539     3.78   0.000     .0542529    .1712781
                 85  |   .1380611   .0333412     4.14   0.000     .0727135    .2034087
                 87  |   .1264818   .0369222     3.43   0.001     .0541156     .198848
                 88  |   .1640382   .0393563     4.17   0.000     .0869012    .2411752
                     |
               _cons |   1.162473     .03784    30.72   0.000     1.088308    1.236638
        -------------+----------------------------------------------------------------
             sigma_u |  .36664367
             sigma_e |  .30300411
                 rho |  .59418375   (fraction of variance due to u_i)
        ------------------------------------------------------------------------------
        
        . xi: xtreg ln_wage age i.year
        i.year            _Iyear_68-88        (naturally coded; _Iyear_68 omitted)
        
        Random-effects GLS regression                   Number of obs     =     28,510
        Group variable: idcode                          Number of groups  =      4,710
        
        R-squared:                                      Obs per group:
             Within  = 0.1060                                         min =          1
             Between = 0.0918                                         avg =        6.1
             Overall = 0.0807                                         max =         15
        
                                                        Wald chi2(15)     =    3253.70
        corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
        
        ------------------------------------------------------------------------------
             ln_wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
        -------------+----------------------------------------------------------------
                 age |   .0137208   .0018898     7.26   0.000     .0100169    .0174247
           _Iyear_69 |   .0744312    .012506     5.95   0.000     .0499199    .0989425
           _Iyear_70 |   .0453659   .0120494     3.77   0.000     .0217496    .0689822
           _Iyear_71 |   .0819949   .0125373     6.54   0.000     .0574222    .1065676
           _Iyear_72 |   .0827461   .0136074     6.08   0.000      .056076    .1094162
           _Iyear_73 |   .0840751   .0143598     5.85   0.000     .0559304    .1122198
           _Iyear_75 |   .0707387   .0167492     4.22   0.000     .0379108    .1035665
           _Iyear_77 |   .1032639   .0197156     5.24   0.000      .064622    .1419059
           _Iyear_78 |   .1279039   .0214888     5.95   0.000     .0857866    .1700211
           _Iyear_80 |    .108871   .0247933     4.39   0.000      .060277     .157465
           _Iyear_82 |    .098831   .0280824     3.52   0.000     .0437906    .1538714
           _Iyear_83 |   .1127655   .0298539     3.78   0.000     .0542529    .1712781
           _Iyear_85 |   .1380611   .0333412     4.14   0.000     .0727135    .2034087
           _Iyear_87 |   .1264818   .0369222     3.43   0.001     .0541156     .198848
           _Iyear_88 |   .1640382   .0393563     4.17   0.000     .0869012    .2411752
               _cons |   1.162473     .03784    30.72   0.000     1.088308    1.236638
        -------------+----------------------------------------------------------------
             sigma_u |  .36664367
             sigma_e |  .30300411
                 rho |  .59418375   (fraction of variance due to u_i)
        ------------------------------------------------------------------------------
        
        .
        3) to avoid that nuisance with the user-written command -xtoverid-, you can probably go with the -mundlak-style modified -xtreg,re- and then decide which specification to go (which is still the relevant issue, I see).
        Kind regards,
        Carlo
        (StataNow 18.5)

        Comment


        • #5
          Hi Carlo,
          I was able to solve the collinearity issue: There weren't any observations for the Acq_TobinsQ control variable for the deals in the years 1997 to 1999 causing the dummys for these years to be omitted due to collinearity. After dropping observations where Acq_TobinsQ is missing -xtoverid- still suggests to go -re (H0 gets rejected and fe suggested when I drop Acq_TobinsQ completely out but I won't do any p hacking here). I am just wondering whether every other researcher on this topic got different results or if they simply didn't care...

          I am still struggling to understand why I am not able to do the mundlak approach manually. Is it because there isn't a single variable in my model that doesn't vary over time?

          Here is the approach using the user written mundlak command:
          Code:
          . mundlak Acq_CAR_1_1_ES2 Acq_CAR_1_1_ES2 CFO_PaySlice CFO_No_Boardsitze CFO_No_Deals CFO_Perc_Own_Dir CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA Deal_Value Deal_Value_
          > Rel Deal_Form Deal_Structure Deal_No_Bidders Deal_Div_FF30 Targ_Listed Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals
          
          +------------------------------------------------+
          |             Variable |     RE     |  Mundlak   |
          |----------------------+------------+------------|
          |         CFO_PaySlice |      0.028 |      0.030 |
          |    CFO_No_Boardsitze |      0.000 |      0.002 |
          |         CFO_No_Deals |      0.000 |     -0.000 |
          |     CFO_Perc_Own_Dir |     -0.000 |     -0.000 |
          |            CFO_Board |      0.004 |      0.014 |
          |              CFO_Age |     -0.000 |     -0.000 |
          |           CFO_Gender |      0.002 |     -0.002 |
          |              CFO_MBA |     -0.003 |     -0.005 |
          |              CFO_CPA |      0.001 |      0.004 |
          |           Deal_Value |     -0.000 |     -0.000 |
          |       Deal_Value_Rel |      0.000 |      0.000 |
          |            Deal_Form |     -0.000 |     -0.000 |
          |       Deal_Structure |     -0.000 |      0.000 |
          |      Deal_No_Bidders |      0.018 |      0.012 |
          |        Deal_Div_FF30 |     -0.004 |     -0.002 |
          |          Targ_Listed |     -0.011 |     -0.006 |
          |         Acq_MktValue |      0.000 |      0.000 |
          |         Acq_Leverage |      0.009 |      0.039 |
          |              Acq_ROA |      0.014 |      0.068 |
          |    Acq_Cash_holdings |     -0.020 |      0.008 |
          |          Acq_TobinsQ |     -0.002 |     -0.002 |
          |              Acq_FCF |      0.043 |     -0.016 |
          |         Acq_No_Deals |     -0.000 |      0.000 |
          | mean__Acq_CAR_1_1_~2 |            |      1.000 |
          |   mean__CFO_PaySlice |            |     -0.030 |
          | mean__CFO_No_Board~e |            |     -0.002 |
          |   mean__CFO_No_Deals |            |      0.000 |
          | mean__CFO_Perc_Own~r |            |      0.000 |
          |      mean__CFO_Board |            |     -0.014 |
          |        mean__CFO_Age |            |      0.000 |
          |     mean__CFO_Gender |            |      0.002 |
          |        mean__CFO_MBA |            |      0.005 |
          |        mean__CFO_CPA |            |     -0.004 |
          |     mean__Deal_Value |            |      0.000 |
          | mean__Deal_Value_Rel |            |     -0.000 |
          |      mean__Deal_Form |            |      0.000 |
          | mean__Deal_Structure |            |     -0.000 |
          | mean__Deal_No_Bidd~s |            |     -0.012 |
          |  mean__Deal_Div_FF30 |            |      0.002 |
          |    mean__Targ_Listed |            |      0.006 |
          |   mean__Acq_MktValue |            |     -0.000 |
          |   mean__Acq_Leverage |            |     -0.039 |
          |        mean__Acq_ROA |            |     -0.068 |
          | mean__Acq_Cash_hol~s |            |     -0.008 |
          |    mean__Acq_TobinsQ |            |      0.002 |
          |        mean__Acq_FCF |            |      0.016 |
          |   mean__Acq_No_Deals |            |     -0.000 |
          |                _cons |     -0.011 |      0.000 |
          |----------------------+------------+------------|
          |                    N |       2520 |       2520 |
          |                  N_g |    980.000 |    980.000 |
          |                g_min |      1.000 |      1.000 |
          |                g_avg |      2.571 |      2.571 |
          |                g_max |     75.000 |     75.000 |
          |                  rho |      0.199 |      0.000 |
          |                 rmse |      0.051 |      0.041 |
          |                 chi2 |          . |          . |
          |                    p |          . |          . |
          |                 df_m |     21.000 |     43.000 |
          |                sigma |      0.058 |      0.052 |
          |              sigma_u |      0.026 |      0.000 |
          |              sigma_e |      0.052 |      0.052 |
          |                 r2_w |      0.025 |      0.034 |
          |                 r2_o |      0.054 |      0.494 |
          |                 r2_b |      0.082 |      1.000 |
          +------------------------------------------------+
          
          . estimates replay Mundlak
          
          --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
          Model Mundlak
          --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
          
          Random-effects GLS regression                   Number of obs     =      2,520
          Group variable: Acq_ID                          Number of groups  =        980
          
          R-squared:                                      Obs per group:
               Within  = 0.0338                                         min =          1
               Between = 1.0000                                         avg =        2.6
               Overall = 0.4942                                         max =         75
          
                                                          Wald chi2(43)     =          .
          corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
          
          -----------------------------------------------------------------------------------------
                  Acq_CAR_1_1_ES2 | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
          ------------------------+----------------------------------------------------------------
                     CFO_PaySlice |   .0297157   .0226856     1.31   0.190    -.0147472    .0741786
                CFO_No_Boardsitze |   .0016832   .0020795     0.81   0.418    -.0023925     .005759
                     CFO_No_Deals |  -.0000583   .0007621    -0.08   0.939     -.001552    .0014353
                 CFO_Perc_Own_Dir |  -.0003142   .0002309    -1.36   0.174    -.0007668    .0001383
                        CFO_Board |   .0136617   .0077049     1.77   0.076    -.0014396    .0287629
                          CFO_Age |  -.0003108   .0002771    -1.12   0.262    -.0008539    .0002322
                       CFO_Gender |  -.0017643    .006192    -0.28   0.776    -.0139004    .0103718
                          CFO_MBA |  -.0051626   .0035719    -1.45   0.148    -.0121634    .0018383
                          CFO_CPA |    .003919   .0034475     1.14   0.256    -.0028381     .010676
                       Deal_Value |  -5.56e-12   9.17e-13    -6.07   0.000    -7.36e-12   -3.76e-12
                   Deal_Value_Rel |   .0000159   7.08e-06     2.25   0.025     2.04e-06    .0000298
                        Deal_Form |  -.0004639   .0005514    -0.84   0.400    -.0015446    .0006169
                   Deal_Structure |   .0000763   .0005131     0.15   0.882    -.0009294    .0010821
                  Deal_No_Bidders |   .0117983   .0120668     0.98   0.328    -.0118521    .0354487
                    Deal_Div_FF30 |  -.0022834   .0026775    -0.85   0.394    -.0075312    .0029643
                      Targ_Listed |  -.0055541   .0038361    -1.45   0.148    -.0130727    .0019645
                     Acq_MktValue |   1.50e-10   8.00e-11     1.88   0.060    -6.46e-12    3.07e-10
                     Acq_Leverage |   .0392461    .011629     3.37   0.001     .0164536    .0620385
                          Acq_ROA |    .068395   .0325425     2.10   0.036     .0046128    .1321772
                Acq_Cash_holdings |   .0075091   .0117285     0.64   0.522    -.0154783    .0304965
                      Acq_TobinsQ |  -.0018114   .0007446    -2.43   0.015    -.0032707   -.0003521
                          Acq_FCF |   -.016368   .0361815    -0.45   0.651    -.0872825    .0545464
                     Acq_No_Deals |   .0001853   .0003547     0.52   0.601    -.0005099    .0008805
            mean__Acq_CAR_1_1_ES2 |          1   .0218495    45.77   0.000     .9571757    1.042824
               mean__CFO_PaySlice |  -.0297157   .0276078    -1.08   0.282     -.083826    .0243947
          mean__CFO_No_Boardsitze |  -.0016832   .0025452    -0.66   0.508    -.0066718    .0033053
               mean__CFO_No_Deals |   .0000583   .0008844     0.07   0.947    -.0016751    .0017917
           mean__CFO_Perc_Own_Dir |   .0003142   .0002871     1.09   0.274    -.0002485     .000877
                  mean__CFO_Board |  -.0136617   .0088858    -1.54   0.124    -.0310775    .0037541
                    mean__CFO_Age |   .0003108   .0003185     0.98   0.329    -.0003134    .0009351
                 mean__CFO_Gender |   .0017643   .0071881     0.25   0.806    -.0123241    .0158527
                    mean__CFO_MBA |   .0051626   .0041006     1.26   0.208    -.0028744    .0131996
                    mean__CFO_CPA |   -.003919    .004018    -0.98   0.329    -.0117942    .0039562
                 mean__Deal_Value |   5.56e-12   1.35e-12     4.11   0.000     2.91e-12    8.21e-12
             mean__Deal_Value_Rel |  -.0000159   9.42e-06    -1.69   0.091    -.0000344    2.55e-06
                  mean__Deal_Form |   .0004639   .0008236     0.56   0.573    -.0011504    .0020782
             mean__Deal_Structure |  -.0000763   .0007339    -0.10   0.917    -.0015148    .0013621
            mean__Deal_No_Bidders |  -.0117983   .0152373    -0.77   0.439    -.0416628    .0180662
              mean__Deal_Div_FF30 |   .0022834   .0035367     0.65   0.519    -.0046483    .0092151
                mean__Targ_Listed |   .0055541   .0055671     1.00   0.318    -.0053572    .0164654
               mean__Acq_MktValue |  -1.50e-10   8.79e-11    -1.71   0.088    -3.23e-10    2.21e-11
               mean__Acq_Leverage |  -.0392461   .0126412    -3.10   0.002    -.0640223   -.0144699
                    mean__Acq_ROA |   -.068395   .0380226    -1.80   0.072    -.1429178    .0061278
          mean__Acq_Cash_holdings |  -.0075091   .0134078    -0.56   0.575    -.0337879    .0187697
                mean__Acq_TobinsQ |   .0018114   .0009568     1.89   0.058    -.0000639    .0036866
                    mean__Acq_FCF |    .016368   .0411759     0.40   0.691    -.0643353    .0970714
               mean__Acq_No_Deals |  -.0001853   .0003877    -0.48   0.633    -.0009451    .0005745
                            _cons |   4.22e-11   .0138017     0.00   1.000    -.0270509    .0270509
          ------------------------+----------------------------------------------------------------
                          sigma_u |          0
                          sigma_e |  .05209004
                              rho |          0   (fraction of variance due to u_i)
          -----------------------------------------------------------------------------------------
          The results differ however if I try do rebuild the approach by hand:
          Code:
           //As none of my variables is time invariant, I calculated the means for all of them
          local number = 0 
          display"`number'"
          foreach var of varlist CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA Deal_Value Deal_Value_Rel Deal_Form Deal_Structure Deal_No_Bidders Deal_Div_FF30 Targ_Listed Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals {
              local ++number
              bysort Acq_ID: egen mean_x`number' = mean(`var')
          }
          
          xtreg Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA Deal_Value Deal_Value_Rel Deal_Form Deal_Structure Deal_No_Bidders Deal_Div_FF30 Targ_Listed Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals mean_x*
          The output:
          Code:
          . xtreg Acq_CAR_1_1_ES2 CFO_Power_FF30 CFO_Board CFO_Age CFO_Gender CFO_MBA CFO_CPA Deal_Value Deal_Value_Rel Deal_Form Deal_Structure Deal_No_Bidders Deal_Div_FF30 Targ_
          > Listed Acq_MktValue Acq_Leverage Acq_ROA Acq_Cash_holdings Acq_TobinsQ Acq_FCF Acq_No_Deals mean_x*
          
          Random-effects GLS regression                   Number of obs     =      2,520
          Group variable: Acq_ID                          Number of groups  =        980
          
          R-squared:                                      Obs per group:
               Within  = 0.0327                                         min =          1
               Between = 0.0874                                         avg =        2.6
               Overall = 0.0607                                         max =         75
          
                                                          Wald chi2(36)     =          .
          corr(u_i, X) = 0 (assumed)                      Prob > chi2       =          .
          
          -----------------------------------------------------------------------------------
            Acq_CAR_1_1_ES2 | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
          ------------------+----------------------------------------------------------------
             CFO_Power_FF30 |   .0041603   .0032396     1.28   0.199    -.0021892    .0105099
                  CFO_Board |   .0128258   .0089146     1.44   0.150    -.0046465    .0302981
                    CFO_Age |  -.0003915   .0003196    -1.22   0.221    -.0010179     .000235
                 CFO_Gender |  -.0014981   .0074572    -0.20   0.841    -.0161139    .0131176
                    CFO_MBA |  -.0033544   .0042889    -0.78   0.434    -.0117604    .0050517
                    CFO_CPA |   .0041485   .0041433     1.00   0.317    -.0039722    .0122691
                 Deal_Value |  -5.91e-12   1.12e-12    -5.27   0.000    -8.11e-12   -3.71e-12
             Deal_Value_Rel |   .0000158   8.64e-06     1.83   0.067    -1.10e-06    .0000328
                  Deal_Form |  -.0005143   .0006732    -0.76   0.445    -.0018336    .0008051
             Deal_Structure |   3.55e-06   .0006202     0.01   0.995    -.0012119     .001219
            Deal_No_Bidders |   .0104773   .0146209     0.72   0.474    -.0181791    .0391337
              Deal_Div_FF30 |  -.0038973   .0032678    -1.19   0.233     -.010302    .0025074
                Targ_Listed |  -.0055012   .0046461    -1.18   0.236    -.0146073     .003605
               Acq_MktValue |   1.42e-10   9.72e-11     1.46   0.143    -4.82e-11    3.33e-10
               Acq_Leverage |   .0354949    .013756     2.58   0.010     .0085336    .0624563
                    Acq_ROA |   .0714477   .0375506     1.90   0.057      -.00215    .1450455
          Acq_Cash_holdings |  -.0058126   .0137161    -0.42   0.672    -.0326957    .0210705
                Acq_TobinsQ |  -.0017071    .000889    -1.92   0.055    -.0034495    .0000353
                    Acq_FCF |  -.0263542   .0421936    -0.62   0.532    -.1090521    .0563437
               Acq_No_Deals |   .0000431    .000423     0.10   0.919     -.000786    .0008722
                    mean_x1 |   -.002992   .0049082    -0.61   0.542    -.0126118    .0066279
                    mean_x2 |  -.0117936   .0110583    -1.07   0.286    -.0334675    .0098804
                    mean_x3 |   .0004296    .000408     1.05   0.292    -.0003702    .0012293
                    mean_x4 |   .0051156    .009748     0.52   0.600    -.0139901    .0242213
                    mean_x5 |   -.000232   .0054814    -0.04   0.966    -.0109752    .0105113
                    mean_x6 |  -.0049498   .0054002    -0.92   0.359    -.0155339    .0056343
                    mean_x7 |  -5.61e-13   1.91e-12    -0.29   0.770    -4.31e-12    3.19e-12
                    mean_x8 |  -1.03e-06   .0000128    -0.08   0.936    -.0000262    .0000241
                    mean_x9 |   .0010534   .0012353     0.85   0.394    -.0013678    .0034746
                   mean_x10 |  -.0012423   .0010443    -1.19   0.234     -.003289    .0008044
                   mean_x11 |   .0136815   .0193615     0.71   0.480    -.0242664    .0516294
                   mean_x12 |  -.0010765   .0050762    -0.21   0.832    -.0110257    .0088728
                   mean_x13 |  -.0139891   .0080897    -1.73   0.084    -.0298446    .0018664
                   mean_x14 |   1.79e-12   1.25e-10     0.01   0.989    -2.43e-10    2.46e-10
                   mean_x15 |  -.0342859   .0160476    -2.14   0.033    -.0657386   -.0028332
                   mean_x16 |  -.1018333   .0465079    -2.19   0.029     -.192987   -.0106795
                   mean_x17 |  -.0254084   .0175918    -1.44   0.149    -.0598877     .009071
                   mean_x18 |  -.0004736   .0013189    -0.36   0.720    -.0030586    .0021113
                   mean_x19 |   .1067305   .0502428     2.12   0.034     .0082565    .2052046
                   mean_x20 |  -.0006726   .0005809    -1.16   0.247    -.0018112    .0004659
                      _cons |   -.007193   .0211932    -0.34   0.734    -.0487308    .0343448
          ------------------+----------------------------------------------------------------
                    sigma_u |  .02604111
                    sigma_e |  .05205147
                        rho |   .2001891   (fraction of variance due to u_i)
          -----------------------------------------------------------------------------------
          Shouldn't the results be identical at this point?
          Thanks a lot
          Kind regards

          Comment


          • #6
            Marc:
            what strikes me is that you have
            Code:
             
             Wald chi2(43)
            and
            Code:
             
             Wald chi2(36)
            in your -mundlak- approaches, whereas they should be identical.
            Kind regards,
            Carlo
            (StataNow 18.5)

            Comment


            • #7
              That’s what surprised me too. Maybe I will manage to find out the reason for that in the upcoming days.
              thanks for helping me out, Carlo

              Comment

              Working...
              X