Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Province and year fixed effects

    Hello altruists,
    I am new to this forum. I've been working on province and year fixed effects and have to determine the following:
    1. Baseline (current regression)
    2. Baseline + province FEs
    3. Baseline + year FEs
    4. Baseline + province and year FEs
    While I've been successful to generate all of the above, the problem remains with the regression output of 3. and 4. The regression coefficients are same when I calculate time (year in my case) fixed effects and time+ province fixed effects.

    The command I've used for year fixed effect is as follows:
    xtreg giniaftertax wage debt edu unempl i.year, fe

    The Stata (17) output for time fixed effects:

    Fixed-effects (within) regression Number of obs = 290
    Group variable: province2 Number of groups = 10

    R-squared: Obs per group:
    Within = 0.5965 min = 29
    Between = 0.2444 avg = 29.0
    Overall = 0.1041 max = 29

    F(32,248) = 11.46
    corr(u_i, Xb) = -0.2288 Prob > F = 0.0000

    ------------------------------------------------------------------------------
    giniaftertax | Coefficient Std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    wage | -.015787 .0045584 -3.46 0.001 -.024765 -.0068089
    debt | -.0047514 .0024122 -1.97 0.050 -.0095023 -4.69e-07
    edu | -.0230065 .015932 -1.44 0.150 -.0543858 .0083727
    unempl | -.0003568 .0005727 -0.62 0.534 -.0014848 .0007712
    |
    year |
    1991 | .001659 .0036165 0.46 0.647 -.0054639 .0087819
    1992 | .0059149 .0037789 1.57 0.119 -.0015279 .0133576
    1993 | -.0047124 .0038415 -1.23 0.221 -.0122785 .0028538
    1994 | -.0035752 .0038273 -0.93 0.351 -.0111134 .0039631
    1995 | -.0008383 .0037379 -0.22 0.823 -.0082003 .0065237
    1996 | .0014287 .0039361 0.36 0.717 -.0063238 .0091811
    1997 | .0025584 .0040056 0.64 0.524 -.0053309 .0104478
    1998 | .014094 .003906 3.61 0.000 .0064008 .0217872
    1999 | .0135665 .0038861 3.49 0.001 .0059125 .0212204
    2000 | .019438 .0040101 4.85 0.000 .0115399 .0273361
    2001 | .0208594 .003976 5.25 0.000 .0130284 .0286905
    2002 | .0250461 .0040201 6.23 0.000 .0171283 .032964
    2003 | .0215969 .0040066 5.39 0.000 .0137056 .0294882
    2004 | .0244702 .0041125 5.95 0.000 .0163704 .0325699
    2005 | .0237914 .0040532 5.87 0.000 .0158083 .0317746
    2006 | .0265157 .004132 6.42 0.000 .0183775 .0346539
    2007 | .0258257 .0042889 6.02 0.000 .0173784 .0342729
    2008 | .0243988 .0042888 5.69 0.000 .0159517 .032846
    2009 | .0274427 .0042705 6.43 0.000 .0190316 .0358538
    2010 | .0266284 .0043256 6.16 0.000 .0181088 .0351479
    2011 | .026752 .0045462 5.88 0.000 .0177979 .035706
    2012 | .0274172 .0047169 5.81 0.000 .0181269 .0367075
    2013 | .0350216 .0050894 6.88 0.000 .0249976 .0450456
    2014 | .0295932 .0052916 5.59 0.000 .0191711 .0400154
    2015 | .0344198 .0054243 6.35 0.000 .0237363 .0451034
    2016 | .0266727 .0056189 4.75 0.000 .0156058 .0377396
    2017 | .0333765 .006044 5.52 0.000 .0214723 .0452807
    2018 | .0286212 .0062414 4.59 0.000 .0163283 .0409142
    |
    _cons | .3445261 .0237769 14.49 0.000 .2976957 .3913565
    -------------+----------------------------------------------------------------
    sigma_u | .01656777
    sigma_e | .00778372
    rho | .81918717 (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    F test that all u_i=0: F(9, 248) = 62.28 Prob > F = 0.0000


    The command I've used for province and year fixed effect is as follows:
    xtreg giniaftertax wage debt edu unempl i.year i.province2 , fe

    The Stata output for province and year fixed effect:
    note: 2.province2 omitted because of collinearity.
    note: 3.province2 omitted because of collinearity.
    note: 4.province2 omitted because of collinearity.
    note: 5.province2 omitted because of collinearity.
    note: 6.province2 omitted because of collinearity.
    note: 7.province2 omitted because of collinearity.
    note: 8.province2 omitted because of collinearity.
    note: 9.province2 omitted because of collinearity.
    note: 10.province2 omitted because of collinearity.

    Fixed-effects (within) regression Number of obs = 290
    Group variable: province2 Number of groups = 10

    R-squared: Obs per group:
    Within = 0.5965 min = 29
    Between = 0.2444 avg = 29.0
    Overall = 0.1041 max = 29

    F(32,248) = 11.46
    corr(u_i, Xb) = -0.2288 Prob > F = 0.0000

    ------------------------------------------------------------------------------
    giniaftertax | Coefficient Std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    wage | -.015787 .0045584 -3.46 0.001 -.024765 -.0068089
    debt | -.0047514 .0024122 -1.97 0.050 -.0095023 -4.69e-07
    edu | -.0230065 .015932 -1.44 0.150 -.0543858 .0083727
    unempl | -.0003568 .0005727 -0.62 0.534 -.0014848 .0007712
    |
    year |
    1991 | .001659 .0036165 0.46 0.647 -.0054639 .0087819
    1992 | .0059149 .0037789 1.57 0.119 -.0015279 .0133576
    1993 | -.0047124 .0038415 -1.23 0.221 -.0122785 .0028538
    1994 | -.0035752 .0038273 -0.93 0.351 -.0111134 .0039631
    1995 | -.0008383 .0037379 -0.22 0.823 -.0082003 .0065237
    1996 | .0014287 .0039361 0.36 0.717 -.0063238 .0091811
    1997 | .0025584 .0040056 0.64 0.524 -.0053309 .0104478
    1998 | .014094 .003906 3.61 0.000 .0064008 .0217872
    1999 | .0135665 .0038861 3.49 0.001 .0059125 .0212204
    2000 | .019438 .0040101 4.85 0.000 .0115399 .0273361
    2001 | .0208594 .003976 5.25 0.000 .0130284 .0286905
    2002 | .0250461 .0040201 6.23 0.000 .0171283 .032964
    2003 | .0215969 .0040066 5.39 0.000 .0137056 .0294882
    2004 | .0244702 .0041125 5.95 0.000 .0163704 .0325699
    2005 | .0237914 .0040532 5.87 0.000 .0158083 .0317746
    2006 | .0265157 .004132 6.42 0.000 .0183775 .0346539
    2007 | .0258257 .0042889 6.02 0.000 .0173784 .0342729
    2008 | .0243988 .0042888 5.69 0.000 .0159517 .032846
    2009 | .0274427 .0042705 6.43 0.000 .0190316 .0358538
    2010 | .0266284 .0043256 6.16 0.000 .0181088 .0351479
    2011 | .026752 .0045462 5.88 0.000 .0177979 .035706
    2012 | .0274172 .0047169 5.81 0.000 .0181269 .0367075
    2013 | .0350216 .0050894 6.88 0.000 .0249976 .0450456
    2014 | .0295932 .0052916 5.59 0.000 .0191711 .0400154
    2015 | .0344198 .0054243 6.35 0.000 .0237363 .0451034
    2016 | .0266727 .0056189 4.75 0.000 .0156058 .0377396
    2017 | .0333765 .006044 5.52 0.000 .0214723 .0452807
    2018 | .0286212 .0062414 4.59 0.000 .0163283 .0409142
    |
    province2 |
    BC | 0 (omitted)
    MB | 0 (omitted)
    NB | 0 (omitted)
    NL | 0 (omitted)
    NS | 0 (omitted)
    ON | 0 (omitted)
    PEI | 0 (omitted)
    QC | 0 (omitted)
    SK | 0 (omitted)
    |
    _cons | .3445261 .0237769 14.49 0.000 .2976957 .3913565
    -------------+----------------------------------------------------------------
    sigma_u | .01656777
    sigma_e | .00778372
    rho | .81918717 (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    F test that all u_i=0: F(9, 248) = 62.28 Prob > F = 0.0000


    Is it normal to have same coefficients for the 'year fixed effects' and 'year + province fixed effects'?
    I've been trying to figure out this, but have not found any YouTube video/article discussing specifically about this issue.
    Thanks in advance
    Last edited by Sumaiya Sara; 03 Mar 2022, 00:20.

  • #2
    Sumaiya:
    welcome to this forum.
    Since -province2- was omitted from the regression as perfectly collinear with your -panelid-, no wonder that the results are the same.
    Last edited by Carlo Lazzaro; 03 Mar 2022, 01:16.
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      Hi Carlo,

      I appreciate your super prompt response. Can you kindly guide me how to resolve the issue? That being said, how to determine 'year + province fixed effects' in my case? Thank you very much again.
      Last edited by Sumaiya Sara; 03 Mar 2022, 11:08.

      Comment


      • #4
        Sumaya:
        there's nothing to fix here; you simpy cannot include -panelid- as a predictor. .
        Personally, I would be fine with -year- only and test its joint statistical significance via -testparm-.
        In addition, with 290 panels I would consider cluster-robust standard errors (see -vce(cluster panelid) or -robust- options; they do the very same job under -xtreg-).
        Kind regards,
        Carlo
        (StataNow 18.5)

        Comment

        Working...
        X