Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help generate regression table using 'estout' command

    Hello everyone,

    I am trying to generate a regression table for 3 models below and my ultimate goal is to display just the coefficients for each variable, as well as their significance levels. However, when I do this through "estout" command, Stata does not break down "high_qual" into 'A-levels, GCSE" and also does not break down other variables by their categories too (e.g. region into "London, East Midlands" and etc). I was wondering if there is any other way to display regression results using another code? Thank you!

    Code:
     xtreg wages i.high_qual training_hrs 
    
    Random-effects GLS regression                   Number of obs     =    338,294
    Group variable: id                              Number of groups  =     89,165
    
    R-squared:                                      Obs per group:
         Within  = 0.0083                                         min =          1
         Between = 0.1505                                         avg =        3.8
         Overall = 0.1267                                         max =         10
    
                                                    Wald chi2(6)      =   19322.35
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    --------------------------------------------------------------------------------------
                   wages | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ---------------------+----------------------------------------------------------------
               high_qual |
    Other higher degree  |  -3.765343    .081937   -45.95   0.000    -3.925936   -3.604749
            A-level etc  |  -5.305169   .0642317   -82.59   0.000    -5.431061   -5.179277
               GCSE etc  |  -6.618824   .0681372   -97.14   0.000     -6.75237   -6.485278
    Other qualification  |   -7.83586   .0919578   -85.21   0.000    -8.016094   -7.655627
       No qualification  |  -9.896498   .0817473  -121.06   0.000    -10.05672   -9.736277
                         |
            training_hrs |   .0016344   .0001601    10.21   0.000     .0013206    .0019482
                   _cons |   11.37303   .0478542   237.66   0.000     11.27924    11.46682
    ---------------------+----------------------------------------------------------------
                 sigma_u |  6.1382893
                 sigma_e |  6.1667793
                     rho |   .4976847   (fraction of variance due to u_i)
    --------------------------------------------------------------------------------------
    
    . estimate store m1, title (Model 1)
    
    . xtreg wages i.high_qual training_hrs i.sex i.region i.age i.sector
    
    Random-effects GLS regression                   Number of obs     =    205,213
    Group variable: id                              Number of groups  =     57,917
    
    R-squared:                                      Obs per group:
         Within  = 0.0225                                         min =          1
         Between = 0.2012                                         avg =        3.5
         Overall = 0.1814                                         max =         10
    
                                                    Wald chi2(35)     =   19472.24
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    ----------------------------------------------------------------------------------------------------
                                 wages | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -----------------------------------+----------------------------------------------------------------
                             high_qual |
                  Other higher degree  |  -2.329431   .1003168   -23.22   0.000    -2.526048   -2.132814
                          A-level etc  |  -3.072894    .084336   -36.44   0.000    -3.238189   -2.907598
                             GCSE etc  |  -4.229586   .0917349   -46.11   0.000    -4.409383   -4.049789
                  Other qualification  |  -5.041695   .1325833   -38.03   0.000    -5.301553   -4.781836
                     No qualification  |  -6.210511   .1554506   -39.95   0.000    -6.515189   -5.905834
                                       |
                          training_hrs |   .0009451   .0001978     4.78   0.000     .0005575    .0013326
                                       |
                                   sex |
                               female  |  -.9664091   .0647862   -14.92   0.000    -1.093388   -.8394306
                                       |
                                region |
                           North West  |    .162787   .1937713     0.84   0.401    -.2169978    .5425718
             Yorkshire and the Humber  |  -.2455217   .1988844    -1.23   0.217     -.635328    .1442847
                        East Midlands  |   .0129424   .2012868     0.06   0.949    -.3815724    .4074572
                        West Midlands  |   .4283902   .1990318     2.15   0.031     .0382951    .8184853
                      East of England  |   .7615273   .1964324     3.88   0.000     .3765268    1.146528
                               London  |   1.135278   .1869629     6.07   0.000     .7688377    1.501719
                           South East  |    1.15785   .1883632     6.15   0.000     .7886648    1.527035
                           South West  |  -.1031834   .1994909    -0.52   0.605    -.4941785    .2878116
                                Wales  |  -.1906424   .2052822    -0.93   0.353    -.5929882    .2117034
                             Scotland  |   .6628312   .1976266     3.35   0.001     .2754901    1.050172
                     Northern Ireland  |    .100596   .2094684     0.48   0.631    -.3099544    .5111465
                                       |
                                   age |
                      16-17 years old  |   2.093445   9.039835     0.23   0.817    -15.62431     19.8112
                      18-19 years old  |   2.170951    9.03903     0.24   0.810    -15.54522    19.88712
                      20-24 years old  |   2.546136   9.038605     0.28   0.778     -15.1692    20.26148
                      25-29 years old  |    3.76751   9.038619     0.42   0.677    -13.94786    21.48288
                      30-34 years old  |   5.268297   9.038609     0.58   0.560    -12.44705    22.98365
                      35-39 years old  |   6.393266    9.03859     0.71   0.479    -11.32205    24.10858
                      40-44 years old  |   6.746084   9.038567     0.75   0.455    -10.96918    24.46135
                      45-49 years old  |   7.130368    9.03856     0.79   0.430    -10.58488    24.84562
                      50-54 years old  |   7.257753   9.038572     0.80   0.422    -10.45752    24.97303
                      55-59 years old  |   7.265843   9.038618     0.80   0.421    -10.44952    24.98121
                      60-64 years old  |   6.758737   9.038757     0.75   0.455     -10.9569    24.47438
                    65 years or older  |   4.785265   9.039245     0.53   0.597    -12.93133    22.50186
                                       |
                                sector |
    managerial & technical occupation  |  -.0488293   .1115175    -0.44   0.661    -.2673997     .169741
                   skilled non-manual  |  -1.901182   .1207305   -15.75   0.000    -2.137809   -1.664554
                       skilled manual  |  -5.896793    .123706   -47.67   0.000    -6.139252   -5.654333
            partly skilled occupation  |  -3.051848   .1269658   -24.04   0.000    -3.300696      -2.803
                 unskilled occupation  |  -3.380385   .1702209   -19.86   0.000    -3.714012   -3.046758
                                       |
                                 _cons |   9.866818   9.040629     1.09   0.275    -7.852489    27.58612
    -----------------------------------+----------------------------------------------------------------
                               sigma_u |  6.0796049
                               sigma_e |  6.5503506
                                   rho |  .46277955   (fraction of variance due to u_i)
    ----------------------------------------------------------------------------------------------------
    
    . estimate store m2, title (Model 2)
    
    . xtreg wages i.high_qual training_hrs i.illness_disability i.sex i.children i.general_health i.region i.age i.sector
    
    Random-effects GLS regression                   Number of obs     =     81,014
    Group variable: id                              Number of groups  =     45,174
    
    R-squared:                                      Obs per group:
         Within  = 0.0093                                         min =          1
         Between = 0.2259                                         avg =        1.8
         Overall = 0.2153                                         max =          4
    
                                                    Wald chi2(43)     =   13494.78
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    ----------------------------------------------------------------------------------------------------
                                 wages | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -----------------------------------+----------------------------------------------------------------
                             high_qual |
                  Other higher degree  |  -2.226562   .1213105   -18.35   0.000    -2.464326   -1.988797
                          A-level etc  |  -2.750473   .1055585   -26.06   0.000    -2.957363   -2.543582
                             GCSE etc  |  -3.690913   .1114786   -33.11   0.000    -3.909407   -3.472419
                  Other qualification  |  -4.429453   .1577683   -28.08   0.000    -4.738673   -4.120232
                     No qualification  |  -5.281472   .1854816   -28.47   0.000     -5.64501   -4.917935
                                       |
                          training_hrs |   .0006149   .0003174     1.94   0.053    -7.30e-06    .0012371
                                       |
                    illness_disability |
                                   no  |   .1494179   .0684527     2.18   0.029     .0152532    .2835826
                                       |
                                   sex |
                               female  |  -1.712939   .0848684   -20.18   0.000    -1.879278     -1.5466
                                       |
                              children |
                                    1  |  -.3398704   .1087729    -3.12   0.002    -.5530613   -.1266795
                                    2  |  -.2720838   .1282247    -2.12   0.034    -.5233996   -.0207681
                                    3  |  -1.174362   .2151139    -5.46   0.000    -1.595978   -.7527469
                                    4  |  -1.975734   .4807552    -4.11   0.000    -2.917997   -1.033471
                                    5  |  -2.071639   1.181146    -1.75   0.079    -4.386643    .2433645
                                    6  |  -4.674262    2.33589    -2.00   0.045    -9.252522   -.0960014
                                       |
                        general_health |
                            very good  |   -.378106   .0689673    -5.48   0.000    -.5132795   -.2429325
                             or Poor?  |  -.9154749   .2117265    -4.32   0.000    -1.330451   -.5004986
                                       |
                                region |
                           North West  |   .2585602   .2247362     1.15   0.250    -.1819145     .699035
             Yorkshire and the Humber  |  -.2284908   .2328341    -0.98   0.326    -.6848373    .2278557
                        East Midlands  |   .0518488   .2331266     0.22   0.824    -.4050709    .5087686
                        West Midlands  |   .5359982   .2331594     2.30   0.022     .0790141    .9929822
                      East of England  |   .9415514   .2282001     4.13   0.000     .4942875    1.388815
                               London  |   1.394893   .2199591     6.34   0.000     .9637811    1.826005
                           South East  |   1.466192   .2183471     6.71   0.000     1.038239    1.894144
                           South West  |  -.0282937   .2312368    -0.12   0.903    -.4815096    .4249222
                                Wales  |  -.2318236   .2358603    -0.98   0.326    -.6941013     .230454
                             Scotland  |   .5588212   .2261004     2.47   0.013     .1156726     1.00197
                     Northern Ireland  |  -.1259098   .2391234    -0.53   0.599    -.5945829    .3427634
                                       |
                                   age |
                      18-19 years old  |   .3611545   .2740854     1.32   0.188    -.1760431     .898352
                      20-24 years old  |   .9872718   .2612305     3.78   0.000     .4752694    1.499274
                      25-29 years old  |   2.151108   .2647774     8.12   0.000     1.632154    2.670062
                      30-34 years old  |   3.617456   .2642491    13.69   0.000     3.099537    4.135375
                      35-39 years old  |   4.557396   .2642927    17.24   0.000     4.039391      5.0754
                      40-44 years old  |   4.976156   .2619728    18.99   0.000     4.462698    5.489613
                      45-49 years old  |   5.086969   .2606707    19.51   0.000     4.576063    5.597874
                      50-54 years old  |   4.821479    .261474    18.44   0.000     4.308999    5.333959
                      55-59 years old  |   4.646858   .2659043    17.48   0.000     4.125695    5.168021
                      60-64 years old  |   3.821465   .2773119    13.78   0.000     3.277944    4.364986
                    65 years or older  |   1.444498   .3071334     4.70   0.000     .8425278    2.046468
                                       |
                                sector |
    managerial & technical occupation  |  -.3820282    .149493    -2.56   0.011     -.675029   -.0890273
                   skilled non-manual  |   -2.93446   .1628875   -18.02   0.000    -3.253714   -2.615206
                       skilled manual  |  -6.914072   .1672881   -41.33   0.000    -7.241951   -6.586194
            partly skilled occupation  |  -4.267661     .17175   -24.85   0.000    -4.604285   -3.931038
                 unskilled occupation  |  -4.637669   .2287794   -20.27   0.000    -5.086069    -4.18927
                                       |
                                 _cons |   13.46299   .3555006    37.87   0.000     12.76622    14.15976
    -----------------------------------+----------------------------------------------------------------
                               sigma_u |  6.4843857
                               sigma_e |  5.1619774
                                   rho |  .61210157   (fraction of variance due to u_i)
    ----------------------------------------------------------------------------------------------------
    
    . estimate store m3, title (Model 3)
    
     estout m1 m2 m3, cells(b(star fmt(3)) se(par fmt(2)))
    
    ------------------------------------------------------------
                           m1              m2              m3   
                         b/se            b/se            b/se   
    ------------------------------------------------------------
    1.high_qual         0.000           0.000           0.000   
                          (.)             (.)             (.)   
    2.high_qual        -3.765***       -2.329***       -2.227***
                       (0.08)          (0.10)          (0.12)   
    3.high_qual        -5.305***       -3.073***       -2.750***
                       (0.06)          (0.08)          (0.11)   
    4.high_qual        -6.619***       -4.230***       -3.691***
                       (0.07)          (0.09)          (0.11)   
    5.high_qual        -7.836***       -5.042***       -4.429***
                       (0.09)          (0.13)          (0.16)   
    9.high_qual        -9.896***       -6.211***       -5.281***
                       (0.08)          (0.16)          (0.19)   
    training_hrs        0.002***        0.001***        0.001   
                       (0.00)          (0.00)          (0.00)   
    1.sex                               0.000           0.000   
                                          (.)             (.)   
    2.sex                              -0.966***       -1.713***
                                       (0.06)          (0.08)   
    1.region                            0.000           0.000   
                                          (.)             (.)   
    2.region                            0.163           0.259   
                                       (0.19)          (0.22)   
    3.region                           -0.246          -0.228   
                                       (0.20)          (0.23)   
    4.region                            0.013           0.052   
                                       (0.20)          (0.23)   
    5.region                            0.428*          0.536*  
                                       (0.20)          (0.23)   
    6.region                            0.762***        0.942***
                                       (0.20)          (0.23)   
    7.region                            1.135***        1.395***
                                       (0.19)          (0.22)   
    8.region                            1.158***        1.466***
                                       (0.19)          (0.22)   
    9.region                           -0.103          -0.028   
                                       (0.20)          (0.23)   
    10.region                          -0.191          -0.232   
                                       (0.21)          (0.24)   
    11.region                           0.663***        0.559*  
                                       (0.20)          (0.23)   
    12.region                           0.101          -0.126   
                                       (0.21)          (0.24)   
    1.age                               0.000                   
                                          (.)                   
    2.age                               2.093           0.000   
                                       (9.04)             (.)   
    3.age                               2.171           0.361   
                                       (9.04)          (0.27)   
    4.age                               2.546           0.987***
                                       (9.04)          (0.26)   
    5.age                               3.768           2.151***
                                       (9.04)          (0.26)   
    6.age                               5.268           3.617***
                                       (9.04)          (0.26)   
    7.age                               6.393           4.557***
                                       (9.04)          (0.26)   
    8.age                               6.746           4.976***
                                       (9.04)          (0.26)   
    9.age                               7.130           5.087***
                                       (9.04)          (0.26)   
    10.age                              7.258           4.821***
                                       (9.04)          (0.26)   
    11.age                              7.266           4.647***
                                       (9.04)          (0.27)   
    12.age                              6.759           3.821***
                                       (9.04)          (0.28)   
    13.age                              4.785           1.444***
                                       (9.04)          (0.31)   
    1.sector                            0.000           0.000   
                                          (.)             (.)   
    2.sector                           -0.049          -0.382*  
                                       (0.11)          (0.15)   
    3.sector                           -1.901***       -2.934***
                                       (0.12)          (0.16)   
    4.sector                           -5.897***       -6.914***
                                       (0.12)          (0.17)   
    5.sector                           -3.052***       -4.268***
                                       (0.13)          (0.17)   
    6.sector                           -3.380***       -4.638***
                                       (0.17)          (0.23)   
    1.illness_~y                                        0.000   
                                                          (.)   
    2.illness_~y                                        0.149*  
                                                       (0.07)   
    0.children                                          0.000   
                                                          (.)   
    1.children                                         -0.340** 
                                                       (0.11)   
    2.children                                         -0.272*  
                                                       (0.13)   
    3.children                                         -1.174***
                                                       (0.22)   
    4.children                                         -1.976***
                                                       (0.48)   
    5.children                                         -2.072   
                                                       (1.18)   
    6.children                                         -4.674*  
                                                       (2.34)   
    1.general_~h                                        0.000   
                                                          (.)   
    2.general_~h                                       -0.378***
                                                       (0.07)   
    5.general_~h                                       -0.915***
                                                       (0.21)   
    _cons              11.373***        9.867          13.463***
                       (0.05)          (9.04)          (0.36)   
    ------------------------------------------------------------

  • #2
    estout is from SSC, as you are asked to explain (FAQ Advice #12). If you want value labels to be displayed, specify the -label- option.


    Code:
    estout m1 m2 m3, cells(b(star fmt(3)) se(par fmt(2))) label

    Comment


    • #3
      thank you! Andrew Musau

      Comment

      Working...
      X