Hello everyone,
I am trying to generate a regression table for 3 models below and my ultimate goal is to display just the coefficients for each variable, as well as their significance levels. However, when I do this through "estout" command, Stata does not break down "high_qual" into 'A-levels, GCSE" and also does not break down other variables by their categories too (e.g. region into "London, East Midlands" and etc). I was wondering if there is any other way to display regression results using another code? Thank you!
I am trying to generate a regression table for 3 models below and my ultimate goal is to display just the coefficients for each variable, as well as their significance levels. However, when I do this through "estout" command, Stata does not break down "high_qual" into 'A-levels, GCSE" and also does not break down other variables by their categories too (e.g. region into "London, East Midlands" and etc). I was wondering if there is any other way to display regression results using another code? Thank you!
Code:
xtreg wages i.high_qual training_hrs Random-effects GLS regression Number of obs = 338,294 Group variable: id Number of groups = 89,165 R-squared: Obs per group: Within = 0.0083 min = 1 Between = 0.1505 avg = 3.8 Overall = 0.1267 max = 10 Wald chi2(6) = 19322.35 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 -------------------------------------------------------------------------------------- wages | Coefficient Std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- high_qual | Other higher degree | -3.765343 .081937 -45.95 0.000 -3.925936 -3.604749 A-level etc | -5.305169 .0642317 -82.59 0.000 -5.431061 -5.179277 GCSE etc | -6.618824 .0681372 -97.14 0.000 -6.75237 -6.485278 Other qualification | -7.83586 .0919578 -85.21 0.000 -8.016094 -7.655627 No qualification | -9.896498 .0817473 -121.06 0.000 -10.05672 -9.736277 | training_hrs | .0016344 .0001601 10.21 0.000 .0013206 .0019482 _cons | 11.37303 .0478542 237.66 0.000 11.27924 11.46682 ---------------------+---------------------------------------------------------------- sigma_u | 6.1382893 sigma_e | 6.1667793 rho | .4976847 (fraction of variance due to u_i) -------------------------------------------------------------------------------------- . estimate store m1, title (Model 1) . xtreg wages i.high_qual training_hrs i.sex i.region i.age i.sector Random-effects GLS regression Number of obs = 205,213 Group variable: id Number of groups = 57,917 R-squared: Obs per group: Within = 0.0225 min = 1 Between = 0.2012 avg = 3.5 Overall = 0.1814 max = 10 Wald chi2(35) = 19472.24 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------------- wages | Coefficient Std. err. z P>|z| [95% conf. interval] -----------------------------------+---------------------------------------------------------------- high_qual | Other higher degree | -2.329431 .1003168 -23.22 0.000 -2.526048 -2.132814 A-level etc | -3.072894 .084336 -36.44 0.000 -3.238189 -2.907598 GCSE etc | -4.229586 .0917349 -46.11 0.000 -4.409383 -4.049789 Other qualification | -5.041695 .1325833 -38.03 0.000 -5.301553 -4.781836 No qualification | -6.210511 .1554506 -39.95 0.000 -6.515189 -5.905834 | training_hrs | .0009451 .0001978 4.78 0.000 .0005575 .0013326 | sex | female | -.9664091 .0647862 -14.92 0.000 -1.093388 -.8394306 | region | North West | .162787 .1937713 0.84 0.401 -.2169978 .5425718 Yorkshire and the Humber | -.2455217 .1988844 -1.23 0.217 -.635328 .1442847 East Midlands | .0129424 .2012868 0.06 0.949 -.3815724 .4074572 West Midlands | .4283902 .1990318 2.15 0.031 .0382951 .8184853 East of England | .7615273 .1964324 3.88 0.000 .3765268 1.146528 London | 1.135278 .1869629 6.07 0.000 .7688377 1.501719 South East | 1.15785 .1883632 6.15 0.000 .7886648 1.527035 South West | -.1031834 .1994909 -0.52 0.605 -.4941785 .2878116 Wales | -.1906424 .2052822 -0.93 0.353 -.5929882 .2117034 Scotland | .6628312 .1976266 3.35 0.001 .2754901 1.050172 Northern Ireland | .100596 .2094684 0.48 0.631 -.3099544 .5111465 | age | 16-17 years old | 2.093445 9.039835 0.23 0.817 -15.62431 19.8112 18-19 years old | 2.170951 9.03903 0.24 0.810 -15.54522 19.88712 20-24 years old | 2.546136 9.038605 0.28 0.778 -15.1692 20.26148 25-29 years old | 3.76751 9.038619 0.42 0.677 -13.94786 21.48288 30-34 years old | 5.268297 9.038609 0.58 0.560 -12.44705 22.98365 35-39 years old | 6.393266 9.03859 0.71 0.479 -11.32205 24.10858 40-44 years old | 6.746084 9.038567 0.75 0.455 -10.96918 24.46135 45-49 years old | 7.130368 9.03856 0.79 0.430 -10.58488 24.84562 50-54 years old | 7.257753 9.038572 0.80 0.422 -10.45752 24.97303 55-59 years old | 7.265843 9.038618 0.80 0.421 -10.44952 24.98121 60-64 years old | 6.758737 9.038757 0.75 0.455 -10.9569 24.47438 65 years or older | 4.785265 9.039245 0.53 0.597 -12.93133 22.50186 | sector | managerial & technical occupation | -.0488293 .1115175 -0.44 0.661 -.2673997 .169741 skilled non-manual | -1.901182 .1207305 -15.75 0.000 -2.137809 -1.664554 skilled manual | -5.896793 .123706 -47.67 0.000 -6.139252 -5.654333 partly skilled occupation | -3.051848 .1269658 -24.04 0.000 -3.300696 -2.803 unskilled occupation | -3.380385 .1702209 -19.86 0.000 -3.714012 -3.046758 | _cons | 9.866818 9.040629 1.09 0.275 -7.852489 27.58612 -----------------------------------+---------------------------------------------------------------- sigma_u | 6.0796049 sigma_e | 6.5503506 rho | .46277955 (fraction of variance due to u_i) ---------------------------------------------------------------------------------------------------- . estimate store m2, title (Model 2) . xtreg wages i.high_qual training_hrs i.illness_disability i.sex i.children i.general_health i.region i.age i.sector Random-effects GLS regression Number of obs = 81,014 Group variable: id Number of groups = 45,174 R-squared: Obs per group: Within = 0.0093 min = 1 Between = 0.2259 avg = 1.8 Overall = 0.2153 max = 4 Wald chi2(43) = 13494.78 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------------- wages | Coefficient Std. err. z P>|z| [95% conf. interval] -----------------------------------+---------------------------------------------------------------- high_qual | Other higher degree | -2.226562 .1213105 -18.35 0.000 -2.464326 -1.988797 A-level etc | -2.750473 .1055585 -26.06 0.000 -2.957363 -2.543582 GCSE etc | -3.690913 .1114786 -33.11 0.000 -3.909407 -3.472419 Other qualification | -4.429453 .1577683 -28.08 0.000 -4.738673 -4.120232 No qualification | -5.281472 .1854816 -28.47 0.000 -5.64501 -4.917935 | training_hrs | .0006149 .0003174 1.94 0.053 -7.30e-06 .0012371 | illness_disability | no | .1494179 .0684527 2.18 0.029 .0152532 .2835826 | sex | female | -1.712939 .0848684 -20.18 0.000 -1.879278 -1.5466 | children | 1 | -.3398704 .1087729 -3.12 0.002 -.5530613 -.1266795 2 | -.2720838 .1282247 -2.12 0.034 -.5233996 -.0207681 3 | -1.174362 .2151139 -5.46 0.000 -1.595978 -.7527469 4 | -1.975734 .4807552 -4.11 0.000 -2.917997 -1.033471 5 | -2.071639 1.181146 -1.75 0.079 -4.386643 .2433645 6 | -4.674262 2.33589 -2.00 0.045 -9.252522 -.0960014 | general_health | very good | -.378106 .0689673 -5.48 0.000 -.5132795 -.2429325 or Poor? | -.9154749 .2117265 -4.32 0.000 -1.330451 -.5004986 | region | North West | .2585602 .2247362 1.15 0.250 -.1819145 .699035 Yorkshire and the Humber | -.2284908 .2328341 -0.98 0.326 -.6848373 .2278557 East Midlands | .0518488 .2331266 0.22 0.824 -.4050709 .5087686 West Midlands | .5359982 .2331594 2.30 0.022 .0790141 .9929822 East of England | .9415514 .2282001 4.13 0.000 .4942875 1.388815 London | 1.394893 .2199591 6.34 0.000 .9637811 1.826005 South East | 1.466192 .2183471 6.71 0.000 1.038239 1.894144 South West | -.0282937 .2312368 -0.12 0.903 -.4815096 .4249222 Wales | -.2318236 .2358603 -0.98 0.326 -.6941013 .230454 Scotland | .5588212 .2261004 2.47 0.013 .1156726 1.00197 Northern Ireland | -.1259098 .2391234 -0.53 0.599 -.5945829 .3427634 | age | 18-19 years old | .3611545 .2740854 1.32 0.188 -.1760431 .898352 20-24 years old | .9872718 .2612305 3.78 0.000 .4752694 1.499274 25-29 years old | 2.151108 .2647774 8.12 0.000 1.632154 2.670062 30-34 years old | 3.617456 .2642491 13.69 0.000 3.099537 4.135375 35-39 years old | 4.557396 .2642927 17.24 0.000 4.039391 5.0754 40-44 years old | 4.976156 .2619728 18.99 0.000 4.462698 5.489613 45-49 years old | 5.086969 .2606707 19.51 0.000 4.576063 5.597874 50-54 years old | 4.821479 .261474 18.44 0.000 4.308999 5.333959 55-59 years old | 4.646858 .2659043 17.48 0.000 4.125695 5.168021 60-64 years old | 3.821465 .2773119 13.78 0.000 3.277944 4.364986 65 years or older | 1.444498 .3071334 4.70 0.000 .8425278 2.046468 | sector | managerial & technical occupation | -.3820282 .149493 -2.56 0.011 -.675029 -.0890273 skilled non-manual | -2.93446 .1628875 -18.02 0.000 -3.253714 -2.615206 skilled manual | -6.914072 .1672881 -41.33 0.000 -7.241951 -6.586194 partly skilled occupation | -4.267661 .17175 -24.85 0.000 -4.604285 -3.931038 unskilled occupation | -4.637669 .2287794 -20.27 0.000 -5.086069 -4.18927 | _cons | 13.46299 .3555006 37.87 0.000 12.76622 14.15976 -----------------------------------+---------------------------------------------------------------- sigma_u | 6.4843857 sigma_e | 5.1619774 rho | .61210157 (fraction of variance due to u_i) ---------------------------------------------------------------------------------------------------- . estimate store m3, title (Model 3) estout m1 m2 m3, cells(b(star fmt(3)) se(par fmt(2))) ------------------------------------------------------------ m1 m2 m3 b/se b/se b/se ------------------------------------------------------------ 1.high_qual 0.000 0.000 0.000 (.) (.) (.) 2.high_qual -3.765*** -2.329*** -2.227*** (0.08) (0.10) (0.12) 3.high_qual -5.305*** -3.073*** -2.750*** (0.06) (0.08) (0.11) 4.high_qual -6.619*** -4.230*** -3.691*** (0.07) (0.09) (0.11) 5.high_qual -7.836*** -5.042*** -4.429*** (0.09) (0.13) (0.16) 9.high_qual -9.896*** -6.211*** -5.281*** (0.08) (0.16) (0.19) training_hrs 0.002*** 0.001*** 0.001 (0.00) (0.00) (0.00) 1.sex 0.000 0.000 (.) (.) 2.sex -0.966*** -1.713*** (0.06) (0.08) 1.region 0.000 0.000 (.) (.) 2.region 0.163 0.259 (0.19) (0.22) 3.region -0.246 -0.228 (0.20) (0.23) 4.region 0.013 0.052 (0.20) (0.23) 5.region 0.428* 0.536* (0.20) (0.23) 6.region 0.762*** 0.942*** (0.20) (0.23) 7.region 1.135*** 1.395*** (0.19) (0.22) 8.region 1.158*** 1.466*** (0.19) (0.22) 9.region -0.103 -0.028 (0.20) (0.23) 10.region -0.191 -0.232 (0.21) (0.24) 11.region 0.663*** 0.559* (0.20) (0.23) 12.region 0.101 -0.126 (0.21) (0.24) 1.age 0.000 (.) 2.age 2.093 0.000 (9.04) (.) 3.age 2.171 0.361 (9.04) (0.27) 4.age 2.546 0.987*** (9.04) (0.26) 5.age 3.768 2.151*** (9.04) (0.26) 6.age 5.268 3.617*** (9.04) (0.26) 7.age 6.393 4.557*** (9.04) (0.26) 8.age 6.746 4.976*** (9.04) (0.26) 9.age 7.130 5.087*** (9.04) (0.26) 10.age 7.258 4.821*** (9.04) (0.26) 11.age 7.266 4.647*** (9.04) (0.27) 12.age 6.759 3.821*** (9.04) (0.28) 13.age 4.785 1.444*** (9.04) (0.31) 1.sector 0.000 0.000 (.) (.) 2.sector -0.049 -0.382* (0.11) (0.15) 3.sector -1.901*** -2.934*** (0.12) (0.16) 4.sector -5.897*** -6.914*** (0.12) (0.17) 5.sector -3.052*** -4.268*** (0.13) (0.17) 6.sector -3.380*** -4.638*** (0.17) (0.23) 1.illness_~y 0.000 (.) 2.illness_~y 0.149* (0.07) 0.children 0.000 (.) 1.children -0.340** (0.11) 2.children -0.272* (0.13) 3.children -1.174*** (0.22) 4.children -1.976*** (0.48) 5.children -2.072 (1.18) 6.children -4.674* (2.34) 1.general_~h 0.000 (.) 2.general_~h -0.378*** (0.07) 5.general_~h -0.915*** (0.21) _cons 11.373*** 9.867 13.463*** (0.05) (9.04) (0.36) ------------------------------------------------------------
Comment