Dear Stata Members
I ran 4 different regressions and my key variable of interest (Volatility_Index) changes its sign on a few occasions. The models include the same set of explanatory variables and the change I make is considering the lags. My Output is attached
Model 2 Only Volatility_Index is lagged
.
I am confused as there is no theory to help me to fixate on a particular model and how to test which model is correct?
I ran 4 different regressions and my key variable of interest (Volatility_Index) changes its sign on a few occasions. The models include the same set of explanatory variables and the change I make is considering the lags. My Output is attached
Code:
Model 1 All Independent variables are at time 't'
reghdfe Cash_to_Assets Volatility_Index SIZE_w LEV_w RD_DUM SG_w MB_w ROA_w PPE_w CFO_w CFO_VOL_w AGE_w, absorb (ind_dum year) cluster (id)
(MWFE estimator converged in 4 iterations)
HDFE Linear regression Number of obs = 140,535
Absorbing 2 HDFE groups F( 11, 15652) = 566.01
Statistics robust to heteroskedasticity Prob > F = 0.0000
R-squared = 0.1394
Adj R-squared = 0.1391
Within R-sq. = 0.1082
Number of clusters (id) = 15,653 Root MSE = 0.2398
(Std. err. adjusted for 15,653 clusters in id)
----------------------------------------------------------------------------------
| Robust
Cash_to_Assets | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------+----------------------------------------------------------------
Volatility_Index | -.0097568 .0028779 -3.39 0.001 -.0153978 -.0041158
SIZE_w | -.0036144 .000836 -4.32 0.000 -.005253 -.0019758
LEV_w | -.0270098 .0083376 -3.24 0.001 -.0433525 -.0106672
RD_DUM | -.0059131 .0025762 -2.30 0.022 -.0109627 -.0008635
SG_w | -.0804705 .0024046 -33.47 0.000 -.0851837 -.0757572
MB_w | -.0142292 .0005879 -24.20 0.000 -.0153816 -.0130768
ROA_w | -.4183874 .0254141 -16.46 0.000 -.4682021 -.3685728
PPE_w | -.0443014 .0074621 -5.94 0.000 -.058928 -.0296749
CFO_w | .0424837 .014816 2.87 0.004 .0134426 .0715248
CFO_VOL_w | -.0925558 .0258393 -3.58 0.000 -.1432039 -.0419078
AGE_w | .0646821 .0016902 38.27 0.000 .0613691 .0679951
_cons | .1975041 .015831 12.48 0.000 .1664735 .2285346
----------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
ind_dum | 18 0 18 |
year | 20 1 19 |
-----------------------------------------------------+
Code:
reghdfe Cash_to_Assets l.Volatility_Index SIZE_w LEV_w RD_DUM SG_w MB_w ROA_w PPE_w CFO_w CFO_VOL_w AGE_w, absor > b (ind_dum year) cluster (id) (MWFE estimator converged in 4 iterations) HDFE Linear regression Number of obs = 140,406 Absorbing 2 HDFE groups F( 11, 15652) = 576.71 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.1409 Adj R-squared = 0.1406 Within R-sq. = 0.1097 Number of clusters (id) = 15,653 Root MSE = 0.2396 (Std. err. adjusted for 15,653 clusters in id) ---------------------------------------------------------------------------------- | Robust Cash_to_Assets | Coefficient std. err. t P>|t| [95% conf. interval] -----------------+---------------------------------------------------------------- Volatility_Index | L1. | .0358103 .0031561 11.35 0.000 .0296241 .0419965 | SIZE_w | -.0046635 .0008355 -5.58 0.000 -.0063011 -.0030259 LEV_w | -.0264594 .0083334 -3.18 0.002 -.0427939 -.010125 RD_DUM | -.0098943 .0025574 -3.87 0.000 -.0149072 -.0048814 SG_w | -.0787333 .0024063 -32.72 0.000 -.0834499 -.0740168 MB_w | -.0136997 .000582 -23.54 0.000 -.0148404 -.0125589 ROA_w | -.4197649 .0253474 -16.56 0.000 -.4694487 -.3700811 PPE_w | -.0394118 .0074293 -5.30 0.000 -.0539741 -.0248495 CFO_w | .0333464 .0147884 2.25 0.024 .0043594 .0623334 CFO_VOL_w | -.1010976 .0257643 -3.92 0.000 -.1515985 -.0505966 AGE_w | .0657841 .0016723 39.34 0.000 .0625062 .069062 _cons | -.015407 .0167898 -0.92 0.359 -.0483169 .017503 ---------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ind_dum | 18 0 18 | year | 20 1 19 | -----------------------------------------------------+
Code:
Model 3 All Independent variables are lagged reghdfe Cash_to_Assets l.Volatility_Index l.SIZE_w l.LEV_w l.RD_DUM l.SG_w l.MB_w l.ROA_w l.PPE_w l.CFO_w l.CF > O_VOL_w l.AGE_w, absorb (ind_dum year) cluster (id) (MWFE estimator converged in 4 iterations) HDFE Linear regression Number of obs = 128,955 Absorbing 2 HDFE groups F( 11, 14917) = 444.26 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.1358 Adj R-squared = 0.1355 Within R-sq. = 0.1070 Number of clusters (id) = 14,918 Root MSE = 0.2397 (Std. err. adjusted for 14,918 clusters in id) ---------------------------------------------------------------------------------- | Robust Cash_to_Assets | Coefficient std. err. t P>|t| [95% conf. interval] -----------------+---------------------------------------------------------------- Volatility_Index | L1. | .0186349 .0032806 5.68 0.000 .0122044 .0250654 | SIZE_w | L1. | -.0044651 .0008571 -5.21 0.000 -.006145 -.0027851 | LEV_w | L1. | .0326895 .0081656 4.00 0.000 .016684 .048695 | RD_DUM | L1. | .0021194 .0025664 0.83 0.409 -.0029111 .0071499 | SG_w | L1. | -.0172025 .002461 -6.99 0.000 -.0220264 -.0123786 | MB_w | L1. | -.0210058 .0005584 -37.62 0.000 -.0221004 -.0199112 | ROA_w | L1. | .3851511 .0149351 25.79 0.000 .3558764 .4144258 | PPE_w | L1. | -.0527335 .0075056 -7.03 0.000 -.0674453 -.0380217 | CFO_w | L1. | .1237895 .0145874 8.49 0.000 .0951964 .1523825 | CFO_VOL_w | L1. | -.1812215 .0263877 -6.87 0.000 -.2329446 -.1294984 | AGE_w | L1. | .0685172 .0017021 40.25 0.000 .0651808 .0718536 | _cons | -.0033283 .0173806 -0.19 0.848 -.0373963 .0307398 ---------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ind_dum | 18 0 18 | year | 19 1 18 | -----------------------------------------------------+
Code:
Model 4 Except variable of interest, all others are lagged. reghdfe Cash_to_Assets Volatility_Index l.SIZE_w l.LEV_w l.RD_DUM l.SG_w l.MB_w l.ROA_w l.PPE_w l.CFO_w l.CFO_ > VOL_w l.AGE_w, absorb (ind_dum year) cluster (id) (MWFE estimator converged in 4 iterations) HDFE Linear regression Number of obs = 129,050 Absorbing 2 HDFE groups F( 11, 14917) = 440.90 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.1358 Adj R-squared = 0.1355 Within R-sq. = 0.1071 Number of clusters (id) = 14,918 Root MSE = 0.2397 (Std. err. adjusted for 14,918 clusters in id) ---------------------------------------------------------------------------------- | Robust Cash_to_Assets | Coefficient std. err. t P>|t| [95% conf. interval] -----------------+---------------------------------------------------------------- Volatility_Index | -.0206103 .0029613 -6.96 0.000 -.0264149 -.0148057 | SIZE_w | L1. | -.0034036 .0008562 -3.98 0.000 -.0050819 -.0017253 | LEV_w | L1. | .0310474 .008152 3.81 0.000 .0150684 .0470263 | RD_DUM | L1. | .0058614 .0025743 2.28 0.023 .0008154 .0109073 | SG_w | L1. | -.0177188 .0024679 -7.18 0.000 -.0225563 -.0128814 | MB_w | L1. | -.0214159 .000559 -38.31 0.000 -.0225116 -.0203201 | ROA_w | L1. | .3780152 .0149347 25.31 0.000 .3487414 .407289 | PPE_w | L1. | -.0573619 .0075174 -7.63 0.000 -.0720968 -.0426269 | CFO_w | L1. | .1285699 .0146049 8.80 0.000 .0999425 .1571973 | CFO_VOL_w | L1. | -.1735276 .0264111 -6.57 0.000 -.2252966 -.1217587 | AGE_w | L1. | .0669816 .0017142 39.07 0.000 .0636215 .0703416 | _cons | .1826648 .016266 11.23 0.000 .1507813 .2145482 ---------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ind_dum | 18 0 18 | year | 19 1 18 | -----------------------------------------------------+
I am confused as there is no theory to help me to fixate on a particular model and how to test which model is correct?
Comment