Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Firthlogit - Average marginal effects

    Hello Statalists,

    I used firthlogit method because of the rare events (excessive zeros). Since the "margins" command does not work after 'firthlogit", I used the technique proposed by Joseph Coveney

    HTML Code:
    firthlogit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGiftsOfficials i.Gifts i.politicPositionM
    tempname B
    matrix define `B' = e(b)
    quietly logit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGiftsOfficials i.Gifts i.politicPositionM, asis iterate(0) from(`B', copy) nolog
    margins, dydx(*) post
    logit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGiftsOfficials i.Gifts i.politicPositionM
    margins, dydx(*) post
    The marginal effects obtained from the standard logit and firthlogit methods are almost the same. I would like to check if the results are correct.

    HTML Code:
    . firthlogit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGiftsOff
    > icials i.Gifts i.politicPositionM
    
    initial:       penalized log likelihood = -199.75085
    rescale:       penalized log likelihood = -199.75085
    Iteration 0:   penalized log likelihood = -199.75085  
    Iteration 1:   penalized log likelihood = -157.81967  
    Iteration 2:   penalized log likelihood = -148.49911  
    Iteration 3:   penalized log likelihood =  -148.3216  
    Iteration 4:   penalized log likelihood = -148.32142  
    Iteration 5:   penalized log likelihood = -148.32142  
    
                                                    Number of obs     =        531
                                                    Wald chi2(10)     =      73.26
    Penalized log likelihood = -148.32142           Prob > chi2       =     0.0000
    
    ----------------------------------------------------------------------------------------
                innovation |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------+----------------------------------------------------------------
          1.SoleProprietor |  -.7341323   .3505348    -2.09   0.036    -1.421168   -.0470966
                     1.KPI |   .7950588   .3523213     2.26   0.024     .1045218    1.485596
               lnWorkersT1 |   .0343293   .1167632     0.29   0.769    -.1945223    .2631808
              1.MajObsElec |   1.021998   .3093701     3.30   0.001     .4156439    1.628352
         1.highCompetition |  -.9992451   .3022214    -3.31   0.001    -1.591588   -.4069021
              1.CreditLine |   .6832562    .295702     2.31   0.021      .103691    1.262821
             1.businessGOV |   1.177281   .3317323     3.55   0.000     .5270973    1.827464
    1.PercepGiftsOfficials |  -1.461738   .3125043    -4.68   0.000    -2.074235   -.8492404
                   1.Gifts |   1.602913   .6205271     2.58   0.010     .3867027    2.819124
        1.politicPositionM |   .5858813    .337224     1.74   0.082    -.0750656    1.246828
                     _cons |  -2.135072   .5460497    -3.91   0.000    -3.205309   -1.064834
    ----------------------------------------------------------------------------------------
    
    . tempname B
    
    . matrix define `B' = e(b)
    
    . quietly logit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGifts
    > Officials i.Gifts i.politicPositionM, asis iterate(0) from(`B', copy) nolog
    
    . margins, dydx(*) post
    
    Average marginal effects                        Number of obs     =        531
    Model VCE    : OIM
    
    Expression   : Pr(innovation), predict()
    dy/dx w.r.t. : 1.SoleProprietor 1.KPI lnWorkersT1 1.MajObsElec 1.highCompetition 1.CreditLine 1.businessGOV 1.PercepGiftsOfficials
                   1.Gifts 1.politicPositionM
    
    ----------------------------------------------------------------------------------------
                           |            Delta-method
                           |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------+----------------------------------------------------------------
          1.SoleProprietor |  -.0662876   .0295192    -2.25   0.025    -.1241441    -.008431
                     1.KPI |   .0729891    .030728     2.38   0.018     .0127634    .1332149
               lnWorkersT1 |   .0032516   .0110878     0.29   0.769    -.0184801    .0249832
              1.MajObsElec |   .1030386   .0317777     3.24   0.001     .0407555    .1653217
         1.highCompetition |  -.1089059   .0364628    -2.99   0.003    -.1803717   -.0374401
              1.CreditLine |   .0663724   .0289854     2.29   0.022     .0095621    .1231826
             1.businessGOV |   .1381452   .0461586     2.99   0.003      .047676    .2286144
    1.PercepGiftsOfficials |  -.1495963   .0320192    -4.67   0.000    -.2123528   -.0868398
                   1.Gifts |   .2137622   .1066279     2.00   0.045     .0047753     .422749
        1.politicPositionM |   .0596445   .0366413     1.63   0.104    -.0121711    .1314601
    ----------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    
    . logit innovation i.SoleProprietor i.KPI lnWorkersT1 i.MajObsElec i.highCompetition i.CreditLine i.businessGOV i.PercepGiftsOfficial
    > s i.Gifts i.politicPositionM
    
    Iteration 0:   log likelihood = -214.41751  
    Iteration 1:   log likelihood = -170.71611  
    Iteration 2:   log likelihood = -162.30387  
    Iteration 3:   log likelihood = -162.16226  
    Iteration 4:   log likelihood = -162.16206  
    Iteration 5:   log likelihood = -162.16206  
    
    Logistic regression                             Number of obs     =        531
                                                    LR chi2(10)       =     104.51
                                                    Prob > chi2       =     0.0000
    Log likelihood = -162.16206                     Pseudo R2         =     0.2437
    
    ----------------------------------------------------------------------------------------
                innovation |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------+----------------------------------------------------------------
          1.SoleProprietor |  -.7744158   .3591472    -2.16   0.031    -1.478331   -.0705001
                     1.KPI |   .8296133   .3602922     2.30   0.021     .1234537    1.535773
               lnWorkersT1 |   .0345982   .1191459     0.29   0.772    -.1989235    .2681199
              1.MajObsElec |   1.062424   .3166581     3.36   0.001     .4417856    1.683063
         1.highCompetition |  -1.032964   .3088274    -3.34   0.001    -1.638254   -.4276731
              1.CreditLine |   .7162555    .302266     2.37   0.018      .123825    1.308686
             1.businessGOV |   1.210867   .3395521     3.57   0.000     .5453568    1.876377
    1.PercepGiftsOfficials |  -1.518501   .3199238    -4.75   0.000    -2.145541   -.8914623
                   1.Gifts |   1.641363   .6429058     2.55   0.011     .3812903    2.901435
        1.politicPositionM |   .5973945   .3446661     1.73   0.083    -.0781387    1.272928
                     _cons |  -2.209897   .5583855    -3.96   0.000    -3.304312   -1.115481
    ----------------------------------------------------------------------------------------
    
    . margins, dydx(*) post
    
    Average marginal effects                        Number of obs     =        531
    Model VCE    : OIM
    
    Expression   : Pr(innovation), predict()
    dy/dx w.r.t. : 1.SoleProprietor 1.KPI lnWorkersT1 1.MajObsElec 1.highCompetition 1.CreditLine 1.businessGOV 1.PercepGiftsOfficials
                   1.Gifts 1.politicPositionM
    
    ----------------------------------------------------------------------------------------
                           |            Delta-method
                           |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------+----------------------------------------------------------------
          1.SoleProprietor |   -.066839   .0288736    -2.31   0.021    -.1234302   -.0102478
                     1.KPI |   .0728684   .0300925     2.42   0.015     .0138881    .1318487
               lnWorkersT1 |   .0031411   .0108174     0.29   0.772    -.0180607    .0243429
              1.MajObsElec |   .1030601   .0313376     3.29   0.001     .0416396    .1644807
         1.highCompetition |  -.1083684   .0358741    -3.02   0.003    -.1786805   -.0380564
              1.CreditLine |   .0667061   .0283985     2.35   0.019      .011046    .1223661
             1.businessGOV |   .1368223   .0453126     3.02   0.003     .0480113    .2256333
    1.PercepGiftsOfficials |  -.1495356   .0316059    -4.73   0.000     -.211482   -.0875891
                   1.Gifts |   .2117406   .1053288     2.01   0.044        .0053    .4181813
        1.politicPositionM |   .0583031   .0358812     1.62   0.104    -.0120229     .128629
    ----------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
Working...
X