Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Some country dummies omitted from cross-section due to collinearity

    Hi everyone,

    I'm running a regression on the World Values Survey, which is individual-level survey data. The data files contain country-level aggregated variables, and the explanatory variable I am focussing on is a policy variable (gender inequality). I am running OLS and ordered logit regressions with country dummies and clustered standard errors (at country level), which is what a majority of my literature does. However, they tend to use repeated cross-sections wereas I am using only one wave of the data (and I am not sure if that makes a difference).

    The issue I am having is when I run my regression with the full list of explanatory variables, stata is omitting 3/4 countries due to collinearity. I'm not clear why it is these countries specifically and any help would be appreciated. When I run the regression with no other country-level variables (so excluding GDP per capita, unemployment and the Gini coefficient) this seems to solve the issue. It is common in my literature to include these other country-level variables. Does this seem like an issue with the data (Gender inequality is a composite measure) or am I misspecifying my regressions?

    My code is:
    reg Q46 genderinequality $X job_scare election_equality home_equality political_equality_perception GDPpercap2 unemploytotal giniWB i.ISO31661numericcode, vce(cluster ISO31661numericcode)

    and my output is:
    Click image for larger version

Name:	Screenshot 2022-02-23 114531.png
Views:	1
Size:	60.8 KB
ID:	1651578 Click image for larger version

Name:	Screenshot 2022-02-23 114601.png
Views:	1
Size:	76.6 KB
ID:	1651577 Click image for larger version

Name:	Screenshot 2022-02-23 114613.png
Views:	2
Size:	62.3 KB
ID:	1651576
    Attached Files

  • #2
    I can't read that table.

    Please read the FAQ about how to ask a question.

    Comment


    • #3
      Beth:
      perfect collinearity relates to regression specification. Non-technically speakiing, if two predictors tell exactly the same thing, one of them will be omitted as the goal of any regression model is to explain the contribution of different predictors (when adjusted for the other ones) in explaining variation in the conditional mean of the regressand (if predictors are not informatively different, the regression goal cannot be reached).
      In addition:
      1) each research fields has its own tribal habits, so I cannot say whether one vs. many cross-sectional study(ies) makes any difference in yours;
      2) as per FAQ, please shate what you typed and what Stata gave you back via CODE delimiters. Thanks.
      Kind regards,
      Carlo
      (StataNow 18.5)

      Comment


      • #4
        Hi both - thank you very much for your patience! I hope the below is clearer to read!


        Code:
        reg Q46 genderinequality $X GDPpercap2 unemploytotal giniWB  i.ISO31661numericcode, vce(cluster ISO31661numericcode)
        Code:
         reg Q46 genderinequality $X GDPpercap2 unemploytotal giniWB  i.ISO31661numericcode, vce(cluster ISO31661numericcode)
        note: 792.ISO31661numericcode omitted because of collinearity.
        note: 818.ISO31661numericcode omitted because of collinearity.
        note: 840.ISO31661numericcode omitted because of collinearity.
        
        Linear regression                               Number of obs     =     63,178
                                                        F(0, 42)          =          .
                                                        Prob > F          =          .
                                                        R-squared         =     0.0844
                                                        Root MSE          =     .74314
        
                                  (Std. err. adjusted for 43 clusters in ISO31661numericcode)
        -------------------------------------------------------------------------------------
                            |               Robust
                        Q46 | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
        --------------------+----------------------------------------------------------------
           genderinequality |    6.36574   .0000873  7.3e+04   0.000     6.365563    6.365916
                 GDPpercap2 |   .0000283   2.63e-10  1.1e+05   0.000     .0000283    .0000283
              unemploytotal |   .0396832   2.36e-08  1.7e+06   0.000     .0396832    .0396833
                     giniWB |  -.0001084   7.92e-07  -136.78   0.000      -.00011   -.0001068
                            |
        ISO31661numericcode |
                 Australia  |   .8787511   .0000183  4.8e+04   0.000     .8787142    .8787881
                Bangladesh  |  -.5367844   6.71e-06 -8.0e+04   0.000    -.5367979   -.5367709
                   Bolivia  |    .210422   5.05e-06  4.2e+04   0.000     .2104118    .2104322
                    Brazil  |  -.3413265   .0000149 -2.3e+04   0.000    -.3413566   -.3412964
                   Myanmar  |  -.0788117   3.74e-07 -2.1e+05   0.000    -.0788124   -.0788109
                     Chile  |   .6382956   4.06e-06  1.6e+05   0.000     .6382875    .6383038
                     China  |   1.500499   .0000177  8.5e+04   0.000     1.500463    1.500534
                  Colombia  |  -.6313892   .0000139 -4.5e+04   0.000    -.6314174   -.6313611
                    Cyprus  |   1.266009   .0000244  5.2e+04   0.000     1.265959    1.266058
                   Ecuador  |  -.1326241   5.39e-06 -2.5e+04   0.000     -.132635   -.1326132
                  Ethiopia  |  -.2716529   6.41e-06 -4.2e+04   0.000    -.2716658     -.27164
                   Germany  |    .994612   .0000203  4.9e+04   0.000      .994571     .994653
                    Greece  |   1.268662   .0000221  5.8e+04   0.000     1.268617    1.268706
                 Guatemala  |  -.4519446   .0000153 -3.0e+04   0.000    -.4519754   -.4519137
                 Indonesia  |  -.5994294   8.80e-06 -6.8e+04   0.000    -.5994472   -.5994117
                      Iran  |    .189704   5.13e-06  3.7e+04   0.000     .1896936    .1897144
                      Iraq  |  -.9976433   9.31e-06 -1.1e+05   0.000    -.9976621   -.9976245
                     Japan  |   1.221662   .0000219  5.6e+04   0.000     1.221618    1.221706
                Kazakhstan  |   .8386698   .0000218  3.8e+04   0.000     .8386258    .8387138
                    Jordan  |  -1.555885   .0079464  -195.80   0.000    -1.571922   -1.539848
               South Korea  |   1.636746   .0000253  6.5e+04   0.000     1.636695    1.636797
                Kyrgyzstan  |  -.0385738   .0000116 -3324.86   0.000    -.0385972   -.0385504
                   Lebanon  |   .0372411   2.20e-06  1.7e+04   0.000     .0372366    .0372455
                  Malaysia  |   .7754089   5.05e-06  1.5e+05   0.000     .7753987    .7754191
                    Mexico  |   .1070053   2.19e-06  4.9e+04   0.000     .1070009    .1070097
               New Zealand  |  -.4183225   .0079661   -52.51   0.000    -.4343987   -.4022464
                 Nicaragua  |  -.1334123   8.23e-06 -1.6e+04   0.000    -.1334289   -.1333957
                  Pakistan  |  -.7359316   7.64e-06 -9.6e+04   0.000    -.7359471   -.7359162
                      Peru  |   .1562213   4.70e-06  3.3e+04   0.000     .1562118    .1562307
               Philippines  |   -.144329   8.01e-06 -1.8e+04   0.000    -.1443452   -.1443129
                   Romania  |   .5934907   6.61e-06  9.0e+04   0.000     .5934774    .5935041
                    Russia  |   .9000838   .0000106  8.5e+04   0.000     .9000623    .9001053
                    Serbia  |   1.519032   .0000223  6.8e+04   0.000     1.518987    1.519077
                   Vietnam  |   .7086685   .0000108  6.6e+04   0.000     .7086467    .7086903
                  Zimbabwe  |   .1781948   .0000147  1.2e+04   0.000     .1781651    .1782246
                Tajikistan  |   .2499721    .000012  2.1e+04   0.000     .2499478    .2499963
                  Thailand  |    .328192   1.98e-06  1.7e+05   0.000      .328188     .328196
                   Tunisia  |   .6314995   .0000127  5.0e+04   0.000     .6314738    .6315252
                    Turkey  |          0  (omitted)
                   Ukraine  |   1.087876   .0000227  4.8e+04   0.000      1.08783    1.087922
                     Egypt  |          0  (omitted)
             United States  |          0  (omitted)
                            |
                      _cons |  -1.343943    .000067 -2.0e+04   0.000    -1.344078   -1.343808
        -------------------------------------------------------------------------------------

        Comment


        • #5
          Beth:
          thank for using CODE delimiters.
          That said:
          1) your enormous sample size justify statistical significance of everything in your -regress- outcome table;
          2) however, your R-sq is really low. Are you sure that your model is correctly specified?
          3) a more substantive issue: how can you easily and meaningfully disseminate the results of your regression as everything seems to reach statistical significance?
          Kind regards,
          Carlo
          (StataNow 18.5)

          Comment


          • #6
            Hi Carlos,

            Thank you very much for your comments! This is not my full model - as my dependent variable is individual-level data, the main set of controls are individual-level variables. This improves the R squared!
            The reason I posted just the output with the country-level variables is because this is when I get the omission of some of the countries (Turkey, Eygpt and the US). If the issue is aggregate variables, I don't see why it should only be affecting a few countries? Unless this is common when including country dummy's and clustered standard errors (which seems ulikely).

            Any more thoughts you had would be very much appreciated!

            Comment


            • #7
              Beth:
              you may want to estimate the correlation between the omitted countries and the other four variables included in the right-hand side of your regression equation.
              Kind regards,
              Carlo
              (StataNow 18.5)

              Comment


              • #8
                Originally posted by Carlo Lazzaro View Post
                Beth:
                you may want to estimate the correlation between the omitted countries and the other four variables included in the right-hand side of your regression equation.
                Hi Carlos,

                Thank you very much for all your helpful advice. I did as you advised and on reflection, I am going to drop most of the country-level variables. However, even including only my country-level variable of interest (gender inequality), one of my country dummies is still being excluded (US).

                Code:
                 reg Q46 genderinequality $X i.ISO31661numericcode, vce(cluster ISO31661numericcode)
                note: 840.ISO31661numericcode omitted because of collinearity.
                
                Linear regression                               Number of obs     =     63,178
                                                                F(15, 42)         =          .
                                                                Prob > F          =          .
                                                                R-squared         =     0.2124
                                                                Root MSE          =     .68929
                
                                          (Std. err. adjusted for 43 clusters in ISO31661numericcode)
                -------------------------------------------------------------------------------------
                                    |               Robust
                                Q46 | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                --------------------+----------------------------------------------------------------
                   genderinequality |   -.991285   .0886889   -11.18   0.000    -1.170266   -.8123035
                               Q262 |   .0106367   .0016494     6.45   0.000      .007308    .0139653
                               age2 |  -.0001266   .0000154    -8.24   0.000    -.0001577   -.0000956
                             gender |  -.0437722   .0072117    -6.07   0.000    -.0583261   -.0292184
                               Q275 |   .0014934   .0039952     0.37   0.710    -.0065692    .0095561
                      maritalstatus |  -.1088563   .0102648   -10.60   0.000    -.1295714   -.0881411
                       labourforces |   .0129881   .0087059     1.49   0.143    -.0045812    .0305573
                               Q288 |  -.0167985    .003236    -5.19   0.000     -.023329    -.010268
                                Q47 |   .3063173   .0288775    10.61   0.000     .2480401    .3645945
                         noreligion |  -.0442345   .0433878    -1.02   0.314    -.1317945    .0433256
                           catholic |   .0041439    .035226     0.12   0.907     -.066945    .0752328
                       othcrhistian |  -.0049942   .0342768    -0.15   0.885    -.0741675    .0641792
                           orthodox |   .0775668   .0374266     2.07   0.044     .0020368    .1530967
                                jew |   .0490626   .0676765     0.72   0.472    -.0875141    .1856393
                             muslim |   .0215776   .0373257     0.58   0.566    -.0537487    .0969039
                              hindu |   .0693523   .0547739     1.27   0.212    -.0411859    .1798906
                           buddhist |   .0984303   .0261631     3.76   0.001     .0456309    .1512297
                                    |
                ISO31661numericcode |
                         Australia  |  -.1522482   .0154076    -9.88   0.000    -.1833419   -.1211544
                        Bangladesh  |   .2760279   .0341349     8.09   0.000     .2071408     .344915
                           Bolivia  |   .1464712   .0171383     8.55   0.000     .1118847    .1810576
                            Brazil  |   .1025043   .0087669    11.69   0.000     .0848121    .1201965
                           Myanmar  |   .1958841   .0372335     5.26   0.000     .1207439    .2710243
                             Chile  |  -.0090477   .0035332    -2.56   0.014    -.0161779   -.0019175
                             China  |  -.1033636   .0100916   -10.24   0.000    -.1237293    -.082998
                          Colombia  |  -.0979537   .0139845    -7.00   0.000    -.1261756   -.0697318
                            Cyprus  |   -.026828   .0237165    -1.13   0.264    -.0746898    .0210338
                           Ecuador  |  -.2601825   .0092046   -28.27   0.000    -.2787581   -.2416069
                          Ethiopia  |   .3506961   .0263275    13.32   0.000      .297565    .4038272
                           Germany  |  -.1795991   .0157254   -11.42   0.000    -.2113341    -.147864
                            Greece  |   .2882757   .0275062    10.48   0.000      .232766    .3437854
                         Guatemala  |   .0525576   .0209117     2.51   0.016     .0103562    .0947591
                         Indonesia  |   .0303813   .0261791     1.16   0.252    -.0224504    .0832129
                              Iran  |   .5735258   .0290082    19.77   0.000     .5149848    .6320667
                              Iraq  |   .5601941   .0374295    14.97   0.000     .4846583    .6357299
                             Japan  |  -.3304101   .0133383   -24.77   0.000    -.3573279   -.3034923
                        Kazakhstan  |  -.3027259   .0176917   -17.11   0.000    -.3384291   -.2670227
                            Jordan  |   .3649826   .0278587    13.10   0.000     .3087615    .4212037
                       South Korea  |   .1080536    .015124     7.14   0.000     .0775321    .1385752
                        Kyrgyzstan  |   -.290065    .022929   -12.65   0.000    -.3363376   -.2437923
                           Lebanon  |   .3234899   .0211169    15.32   0.000     .2808742    .3661057
                          Malaysia  |   .1212032   .0179881     6.74   0.000     .0849016    .1575047
                            Mexico  |  -.2376103   .0029128   -81.58   0.000    -.2434885   -.2317321
                       New Zealand  |  -.3199828   .0198921   -16.09   0.000    -.3601267    -.279839
                         Nicaragua  |   .0261222   .0131615     1.98   0.054    -.0004387    .0526832
                          Pakistan  |   .1366724   .0310633     4.40   0.000     .0739841    .1993608
                              Peru  |   .0847401   .0130574     6.49   0.000     .0583891     .111091
                       Philippines  |  -.1404712   .0128462   -10.93   0.000    -.1663957   -.1145466
                           Romania  |   .1633439   .0158021    10.34   0.000     .1314539    .1952339
                            Russia  |  -.0802811   .0137571    -5.84   0.000    -.1080441   -.0525182
                            Serbia  |  -.0264661   .0165333    -1.60   0.117    -.0598316    .0068995
                           Vietnam  |  -.2643021   .0120918   -21.86   0.000    -.2887044   -.2398998
                          Zimbabwe  |   .7015063   .0268754    26.10   0.000     .6472694    .7557431
                        Tajikistan  |  -.2753251   .0224417   -12.27   0.000    -.3206144   -.2300359
                          Thailand  |   .1382681   .0322071     4.29   0.000     .0732716    .2032646
                           Tunisia  |   .2007133   .0254148     7.90   0.000     .1494241    .2520024
                            Turkey  |   .1505178   .0225929     6.66   0.000     .1049234    .1961122
                           Ukraine  |  -.0565045   .0166858    -3.39   0.002    -.0901778   -.0228312
                             Egypt  |   .5448296   .0290499    18.75   0.000     .4862044    .6034547
                     United States  |          0  (omitted)
                                    |
                              _cons |   1.369191   .0835426    16.39   0.000     1.200596    1.537787
                -------------------------------------------------------------------------------------
                I have read that stata will create dummy variables for all but one country so is that the US? However, I am concerned I am not getting an F-statistic.

                Comment


                • #9
                  Beth:
                  no worries; trivial issues indeed.
                  1) Stata omits the reference category for -i.county- to avoid the so called dummy trap (search wiki for a quick description);
                  2) -help j_robust_singular- will reply to your second question about the missing F-statistic.
                  Kind regards,
                  Carlo
                  (StataNow 18.5)

                  Comment


                  • #10
                    Originally posted by Carlo Lazzaro View Post
                    Beth:
                    no worries; trivial issues indeed.
                    1) Stata omits the reference category for -i.county- to avoid the so called dummy trap (search wiki for a quick description);
                    2) -help j_robust_singular- will reply to your second question about the missing F-statistic.
                    Hi Carlos,

                    Thank you very much for the reassurance and for bringing that command to my attention. Your help has been much appreciated!

                    Thanks,
                    Beth

                    Comment

                    Working...
                    X