Hello all,
My research aims to investigate whether individuals with high education and high training earn more than those who do not have sufficient training/education. I have broken down participants into four groups (1) low education/low training; 2) high education/high training; 3) low education/high training and 4) high education/low training). I created interactions between them to see which group earns the highest wages. I have also included other determinants of income in my model. Below, I have included examples of a couple of the groups to help and develop my case.
My questions are:
1) Is this the correct way of using interactions? Is there a better/more efficient way for the purposes of the research question?
2) Interestingly, when I include other variables in my model, the interaction between education and training becomes insignificant - what does that mean?
3) I would be grateful if someone could also help me with the interpretation of these interaction results. For example, as the case below shows, the interaction between low_edu and low_training is -0.3568421. What does that mean?
4) when I estimate interactions between gender and training, Stata only reveals the results for females. What shall I do for it to include males too (given that the variable 'gender' contains both)?
Thank you very much in advance!
[ . xtreg wages i.low_edu##i.low_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
--------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
---------------------+----------------------------------------------------------------
1.low_edu | -5.8737 .1188482 -49.42 0.000 -6.106638 -5.640761
1.low_training | -1.698064 .0974041 -17.43 0.000 -1.888972 -1.507155
|
low_edu#low_training |
1 1 | -.3568421 .1119215 -3.19 0.001 -.5762041 -.1374801
|
_cons | 12.68142 .1052855 120.45 0.000 12.47507 12.88778
---------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
--------------------------------------------------------------------------------------
]
[xtreg wages i.low_edu i.low_training i.low_edu##i.low_training i.illness_disability i.sex i.children i.general_health i.marrital_status i.region i.age i.sector
Random-effects GLS regression Number of obs = 80,987
Group variable: id Number of groups = 45,184
R-squared: Obs per group:
Within = 0.0084 min = 1
Between = 0.2277 avg = 1.8
Overall = 0.2171 max = 4
Wald chi2(50) = 13450.92
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
----------------------------------------------------------------------------------------------------
wages | Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------------------+----------------------------------------------------------------
1.low_edu | -2.90262 .138659 -20.93 0.000 -3.174386 -2.630853
1.low_training | -.596947 .1072609 -5.57 0.000 -.8071746 -.3867194
|
low_edu#low_training |
1 1 | -.1727221 .135354 -1.28 0.202 -.4380111 .0925668
|
illness_disability |
no | .0274173 .070342 0.39 0.697 -.1104504 .1652851
|
sex |
female | -1.614785 .0852835 -18.93 0.000 -1.781937 -1.447632
|
children |
1 | -.4176488 .1091449 -3.83 0.000 -.6315689 -.2037287
2 | -.4066241 .1293634 -3.14 0.002 -.6601718 -.1530764
3 | -1.318122 .2158384 -6.11 0.000 -1.741158 -.8950867
4 | -2.118664 .4798341 -4.42 0.000 -3.059122 -1.178207
5 | -2.447484 1.181438 -2.07 0.038 -4.76306 -.1319082
6 | -5.246481 2.336251 -2.25 0.025 -9.825449 -.6675131
|
general_health |
very good | -.2556415 .0720459 -3.55 0.000 -.3968488 -.1144342
good | -.5585276 .0817225 -6.83 0.000 -.7187008 -.3983544
fair | -.9761969 .1124904 -8.68 0.000 -1.196674 -.7557198
or Poor? | -1.172676 .2144851 -5.47 0.000 -1.593059 -.7522932
|
marrital_status |
married | 1.023875 .0938596 10.91 0.000 .8399137 1.207837
civil partner (legal) | .7189542 .5583093 1.29 0.198 -.3753119 1.81322
separated legally marr | .2603422 .2100295 1.24 0.215 -.151308 .6719925
divorced | .4680171 .1413487 3.31 0.001 .1909787 .7450554
widowed | .4130304 .307392 1.34 0.179 -.1894467 1.015508
sep from civil partner | -1.898825 1.72616 -1.10 0.271 -5.282037 1.484387
a former civil partner | -1.278494 3.659424 -0.35 0.727 -8.450834 5.893846
surviving civil partner | 3.183246 3.74548 0.85 0.395 -4.157761 10.52425
|
region |
North West | .2900335 .2244571 1.29 0.196 -.1498944 .7299613
Yorkshire and the Humber | -.2500624 .2325673 -1.08 0.282 -.7058859 .2057611
East Midlands | .029028 .2327893 0.12 0.901 -.4272308 .4852867
West Midlands | .5222915 .2328438 2.24 0.025 .065926 .978657
East of England | .9182685 .2279198 4.03 0.000 .471554 1.364983
London | 1.488184 .2197212 6.77 0.000 1.057539 1.91883
South East | 1.473484 .2180581 6.76 0.000 1.046098 1.90087
South West | .0037702 .230934 0.02 0.987 -.4488522 .4563927
Wales | -.2532327 .2355061 -1.08 0.282 -.7148162 .2083507
Scotland | .6664761 .2257843 2.95 0.003 .223947 1.109005
Northern Ireland | -.2878537 .2387056 -1.21 0.228 -.755708 .1800007
|
age |
18-19 years old | .6488594 .2727242 2.38 0.017 .1143299 1.183389
20-24 years old | 1.168957 .2601275 4.49 0.000 .6591165 1.678798
25-29 years old | 2.011161 .2648456 7.59 0.000 1.492073 2.530249
30-34 years old | 3.218317 .2671965 12.04 0.000 2.694622 3.742013
35-39 years old | 4.004506 .2694368 14.86 0.000 3.47642 4.532593
40-44 years old | 4.330584 .2686496 16.12 0.000 3.80404 4.857127
45-49 years old | 4.369398 .2688791 16.25 0.000 3.842405 4.896392
50-54 years old | 4.033248 .2711242 14.88 0.000 3.501854 4.564641
55-59 years old | 3.776262 .2764009 13.66 0.000 3.234526 4.317998
60-64 years old | 2.857164 .287798 9.93 0.000 2.293091 3.421238
65 years or older | .3759601 .3172377 1.19 0.236 -.2458143 .9977346
|
sector |
managerial & technical occupation | -.3781948 .1493594 -2.53 0.011 -.6709339 -.0854558
skilled non-manual | -3.037687 .1624002 -18.70 0.000 -3.355985 -2.719388
skilled manual | -7.110947 .1664965 -42.71 0.000 -7.437274 -6.78462
partly skilled occupation | -4.504815 .170801 -26.37 0.000 -4.839579 -4.170051
unskilled occupation | -5.152122 .2260784 -22.79 0.000 -5.595227 -4.709016
|
_cons | 13.98079 .3639008 38.42 0.000 13.26756 14.69402
-----------------------------------+----------------------------------------------------------------
sigma_u | 6.462475
sigma_e | 5.1604593
rho | .61063295 (fraction of variance due to u_i)
----------------------------------------------------------------------------------------------------]
[*HE & HT
. xtreg wages i.high_edu##i.high_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
----------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
-----------------------+----------------------------------------------------------------
1.high_edu | 6.230542 .076358 81.60 0.000 6.080883 6.380201
1.high_training | 2.054906 .0555559 36.99 0.000 1.946018 2.163793
|
high_edu#high_training |
1 1 | -.3568421 .1119215 -3.19 0.001 -.5762041 -.1374801
|
_cons | 4.752816 .0257906 184.28 0.000 4.702267 4.803365
-----------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
----------------------------------------------------------------------------------------
]
[*LE & HT
. xtreg wages i.low_edu##i.high_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
---------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
1.low_edu | -6.230542 .076358 -81.60 0.000 -6.380201 -6.080883
1.high_training | 1.698064 .0974041 17.43 0.000 1.507155 1.888972
|
low_edu#high_training |
1 1 | .3568421 .1119215 3.19 0.001 .1374801 .5762041
|
_cons | 10.98336 .073165 150.12 0.000 10.83996 11.12676
----------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
---------------------------------------------------------------------------------------
]
My research aims to investigate whether individuals with high education and high training earn more than those who do not have sufficient training/education. I have broken down participants into four groups (1) low education/low training; 2) high education/high training; 3) low education/high training and 4) high education/low training). I created interactions between them to see which group earns the highest wages. I have also included other determinants of income in my model. Below, I have included examples of a couple of the groups to help and develop my case.
My questions are:
1) Is this the correct way of using interactions? Is there a better/more efficient way for the purposes of the research question?
2) Interestingly, when I include other variables in my model, the interaction between education and training becomes insignificant - what does that mean?
3) I would be grateful if someone could also help me with the interpretation of these interaction results. For example, as the case below shows, the interaction between low_edu and low_training is -0.3568421. What does that mean?
4) when I estimate interactions between gender and training, Stata only reveals the results for females. What shall I do for it to include males too (given that the variable 'gender' contains both)?
Thank you very much in advance!
[ . xtreg wages i.low_edu##i.low_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
--------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
---------------------+----------------------------------------------------------------
1.low_edu | -5.8737 .1188482 -49.42 0.000 -6.106638 -5.640761
1.low_training | -1.698064 .0974041 -17.43 0.000 -1.888972 -1.507155
|
low_edu#low_training |
1 1 | -.3568421 .1119215 -3.19 0.001 -.5762041 -.1374801
|
_cons | 12.68142 .1052855 120.45 0.000 12.47507 12.88778
---------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
--------------------------------------------------------------------------------------
]
[xtreg wages i.low_edu i.low_training i.low_edu##i.low_training i.illness_disability i.sex i.children i.general_health i.marrital_status i.region i.age i.sector
Random-effects GLS regression Number of obs = 80,987
Group variable: id Number of groups = 45,184
R-squared: Obs per group:
Within = 0.0084 min = 1
Between = 0.2277 avg = 1.8
Overall = 0.2171 max = 4
Wald chi2(50) = 13450.92
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
----------------------------------------------------------------------------------------------------
wages | Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------------------+----------------------------------------------------------------
1.low_edu | -2.90262 .138659 -20.93 0.000 -3.174386 -2.630853
1.low_training | -.596947 .1072609 -5.57 0.000 -.8071746 -.3867194
|
low_edu#low_training |
1 1 | -.1727221 .135354 -1.28 0.202 -.4380111 .0925668
|
illness_disability |
no | .0274173 .070342 0.39 0.697 -.1104504 .1652851
|
sex |
female | -1.614785 .0852835 -18.93 0.000 -1.781937 -1.447632
|
children |
1 | -.4176488 .1091449 -3.83 0.000 -.6315689 -.2037287
2 | -.4066241 .1293634 -3.14 0.002 -.6601718 -.1530764
3 | -1.318122 .2158384 -6.11 0.000 -1.741158 -.8950867
4 | -2.118664 .4798341 -4.42 0.000 -3.059122 -1.178207
5 | -2.447484 1.181438 -2.07 0.038 -4.76306 -.1319082
6 | -5.246481 2.336251 -2.25 0.025 -9.825449 -.6675131
|
general_health |
very good | -.2556415 .0720459 -3.55 0.000 -.3968488 -.1144342
good | -.5585276 .0817225 -6.83 0.000 -.7187008 -.3983544
fair | -.9761969 .1124904 -8.68 0.000 -1.196674 -.7557198
or Poor? | -1.172676 .2144851 -5.47 0.000 -1.593059 -.7522932
|
marrital_status |
married | 1.023875 .0938596 10.91 0.000 .8399137 1.207837
civil partner (legal) | .7189542 .5583093 1.29 0.198 -.3753119 1.81322
separated legally marr | .2603422 .2100295 1.24 0.215 -.151308 .6719925
divorced | .4680171 .1413487 3.31 0.001 .1909787 .7450554
widowed | .4130304 .307392 1.34 0.179 -.1894467 1.015508
sep from civil partner | -1.898825 1.72616 -1.10 0.271 -5.282037 1.484387
a former civil partner | -1.278494 3.659424 -0.35 0.727 -8.450834 5.893846
surviving civil partner | 3.183246 3.74548 0.85 0.395 -4.157761 10.52425
|
region |
North West | .2900335 .2244571 1.29 0.196 -.1498944 .7299613
Yorkshire and the Humber | -.2500624 .2325673 -1.08 0.282 -.7058859 .2057611
East Midlands | .029028 .2327893 0.12 0.901 -.4272308 .4852867
West Midlands | .5222915 .2328438 2.24 0.025 .065926 .978657
East of England | .9182685 .2279198 4.03 0.000 .471554 1.364983
London | 1.488184 .2197212 6.77 0.000 1.057539 1.91883
South East | 1.473484 .2180581 6.76 0.000 1.046098 1.90087
South West | .0037702 .230934 0.02 0.987 -.4488522 .4563927
Wales | -.2532327 .2355061 -1.08 0.282 -.7148162 .2083507
Scotland | .6664761 .2257843 2.95 0.003 .223947 1.109005
Northern Ireland | -.2878537 .2387056 -1.21 0.228 -.755708 .1800007
|
age |
18-19 years old | .6488594 .2727242 2.38 0.017 .1143299 1.183389
20-24 years old | 1.168957 .2601275 4.49 0.000 .6591165 1.678798
25-29 years old | 2.011161 .2648456 7.59 0.000 1.492073 2.530249
30-34 years old | 3.218317 .2671965 12.04 0.000 2.694622 3.742013
35-39 years old | 4.004506 .2694368 14.86 0.000 3.47642 4.532593
40-44 years old | 4.330584 .2686496 16.12 0.000 3.80404 4.857127
45-49 years old | 4.369398 .2688791 16.25 0.000 3.842405 4.896392
50-54 years old | 4.033248 .2711242 14.88 0.000 3.501854 4.564641
55-59 years old | 3.776262 .2764009 13.66 0.000 3.234526 4.317998
60-64 years old | 2.857164 .287798 9.93 0.000 2.293091 3.421238
65 years or older | .3759601 .3172377 1.19 0.236 -.2458143 .9977346
|
sector |
managerial & technical occupation | -.3781948 .1493594 -2.53 0.011 -.6709339 -.0854558
skilled non-manual | -3.037687 .1624002 -18.70 0.000 -3.355985 -2.719388
skilled manual | -7.110947 .1664965 -42.71 0.000 -7.437274 -6.78462
partly skilled occupation | -4.504815 .170801 -26.37 0.000 -4.839579 -4.170051
unskilled occupation | -5.152122 .2260784 -22.79 0.000 -5.595227 -4.709016
|
_cons | 13.98079 .3639008 38.42 0.000 13.26756 14.69402
-----------------------------------+----------------------------------------------------------------
sigma_u | 6.462475
sigma_e | 5.1604593
rho | .61063295 (fraction of variance due to u_i)
----------------------------------------------------------------------------------------------------]
[*HE & HT
. xtreg wages i.high_edu##i.high_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
----------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
-----------------------+----------------------------------------------------------------
1.high_edu | 6.230542 .076358 81.60 0.000 6.080883 6.380201
1.high_training | 2.054906 .0555559 36.99 0.000 1.946018 2.163793
|
high_edu#high_training |
1 1 | -.3568421 .1119215 -3.19 0.001 -.5762041 -.1374801
|
_cons | 4.752816 .0257906 184.28 0.000 4.702267 4.803365
-----------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
----------------------------------------------------------------------------------------
]
[*LE & HT
. xtreg wages i.low_edu##i.high_training, vce (cluster id)
Random-effects GLS regression Number of obs = 338,585
Group variable: id Number of groups = 89,185
R-squared: Obs per group:
Within = 0.0077 min = 1
Between = 0.1314 avg = 3.8
Overall = 0.1101 max = 10
Wald chi2(3) = 9169.39
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. err. adjusted for 89,185 clusters in id)
---------------------------------------------------------------------------------------
| Robust
wages | Coefficient std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
1.low_edu | -6.230542 .076358 -81.60 0.000 -6.380201 -6.080883
1.high_training | 1.698064 .0974041 17.43 0.000 1.507155 1.888972
|
low_edu#high_training |
1 1 | .3568421 .1119215 3.19 0.001 .1374801 .5762041
|
_cons | 10.98336 .073165 150.12 0.000 10.83996 11.12676
----------------------+----------------------------------------------------------------
sigma_u | 6.1106458
sigma_e | 6.167227
rho | .4953917 (fraction of variance due to u_i)
---------------------------------------------------------------------------------------
]
Comment