Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Long Panel: I use AB but It is better PVAR or panel ARDL?

    Hello,

    My sample is 27 countries over the period 1970-2020.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float(ln_co2pc_gr res_share_ch ei_ch) long pais float year
               .          .             . 1 1970
       .04318523  -.6838717  8.359551e-06 1 1971
     -.003316879  -.5843963   .0009368509 1 1972
      .035467148 -.19065896   .0010287017 1 1973
      -.01744461  1.1816183  -.0017663687 1 1974
      -.04150105 -1.1635613  -.0006288141 1 1975
       .02756405  -.4502255    .004128687 1 1976
         .027318   .4519265   -.003269479 1 1977
      -.01889515   .7232267    .005923823 1 1978
       .03856087 -.03159031   -.003776513 1 1979
     -.033974648  1.6892276 .000064082444 1 1980
      -.03340912   .3562208    .003573708 1 1981
     -.029852867     .22335   .0005264431 1 1982
      .010718346  .55891395  -.0008517876 1 1983
     -.025982857   .3025955   .0005473718 1 1984
      -.09177828   .2845615    .001306817 1 1985
       .06215334 -.57471985  -.0015678406 1 1986
      .035816193 -.04727695   .0022074506 1 1987
       .01995754 -2.0891473   .0035996065 1 1988
        -.051548  -.8556552    .003797956 1 1989
      -.08002138  2.5997005 -.00005368143 1 1990
       .04825544  -.7621235  -.0037634596 1 1991
      .014944077   .8977495   -.004395187 1 1992
      .020612717   .9866562   -.005773418 1 1993
       .02478409  .05130513  .00046010315 1 1994
     -.012306213   .1040608     .00382334 1 1995
       .04091835   -.889446  -.0021086782 1 1996
     .0079956055   .5504242  -.0032310635 1 1997
      .014033318  .14474016  -.0015993714 1 1998
      .029364586 -1.4123623    .004682116 1 1999
     -.013619423  -.7077209     .00665576 1 2000
      -.04242325  1.7975198  -.0001920089 1 2001
     -.064777374   .4461319    .007865772 1 2002
       .05957603  -.9268353   -.001951866 1 2003
       .07559109 -1.3884256  .00006687641 1 2004
       .02943516  .53251714   -.005813979 1 2005
       .04256248  .10701164   -.003355786 1 2006
       .08056164 -1.0392638  -.0004028007 1 2007
       .02333355   .4650531  -.0015919358 1 2008
      -.07792091  1.7649453   -.000819169 1 2009
       .07104397   .3953756   -.003054425 1 2010
      .036629677  .19075124  -.0014053434 1 2011
      .005539894  -.5361876     .00164406 1 2012
      .017653465 .006848871  .00021656603 1 2013
      -.02623844   .9186995   .0021337345 1 2014
       .01380539 -1.0696038  -.0012462884 1 2015
     -.014710426   .5231693   .0019309297 1 2016
     -.024267197  1.1013072  -.0033791065 1 2017
      -.04940796  -.1671047   .0008261427 1 2018
      -.03939629  -.0826373   .0004553869 1 2019
      -.12809563          .             . 1 2020
               .          .             . 2 1970
       .03735685  -3.583941             . 2 1971
      .006715775  -3.595976             . 2 1972
        .0723815  1.0047908             . 2 1973
     -.013946533  -2.443425             . 2 1974
       .06486988  -5.076143   .0021264479 2 1975
       .06060696   1.480327  -.0028430596 2 1976
       .15053034  -.9558575    .017706402 2 1977
       .05724525   -5.38981   -.004387319 2 1978
        .2042713  1.2600955    .011719197 2 1979
      .064723015   2.294343   -.007564358 2 1980
     .0004091263 -4.1512866     .00523252 2 1981
     -.010876656  -1.286386   .0008103475 2 1982
      -.08180618  -.2205604   -.015049823 2 1983
       .02359295  .52316314     .00834471 2 1984
      -.05776501  -.6478212   -.005634196 2 1985
         .281785  -.4750064     .02013827 2 1986
      .062625885  -5.436717   -.005898573 2 1987
      .008115768   .7065676   -.003384814 2 1988
       .05866051 -1.0042635    .006946467 2 1989
      -.02052593   .9601043   .0005567968 2 1990
    -.0022001266   -.832518    .016187295 2 1991
      -.12391949  -1.431724    -.02331887 2 1992
     -.013767242  -1.408625    .002412543 2 1993
        .1101904   1.988639    .008190632 2 1994
      .034041405 -1.8642867    .006239846 2 1995
        .0448246   .2397784   .0004650354 2 1996
       .12469387  -.6353271    .007994488 2 1997
      -.02123642  .59386986  -.0091282725 2 1998
       .05735397   -2.49613   .0045640916 2 1999
       .04701233   2.706013     .00487949 2 2000
      -.04536247 -1.0512298   -.005044684 2 2001
     -.015072823  .05328191  -.0028871745 2 2002
     .0005598068 -.10914221  -.0025393665 2 2003
      .012296677  -.2341628 -.00010548532 2 2004
      .017718315   .7751106   -.003184572 2 2005
      .008773804 -1.2377497   -.007161543 2 2006
      .010412216   .3962357 -.00034835935 2 2007
       .15820885   -.927561     .01863219 2 2008
     -.035902023   .4229553   .0033046156 2 2009
      -.07738018  -.8142483   -.008181274 2 2010
        .0507679  -.3567042    .007837012 2 2011
      -.06547451 -.08397305   -.008323476 2 2012
      .010436058  -1.083137   .0025542825 2 2013
      -.09462738  .20679207   -.014072418 2 2014
     -.010979652 -1.1899234   -.004809044 2 2015
      -.06432438   .5234437   -.009212226 2 2016
      .026329994   .5948993    .004054792 2 2017
       .01234913   .7516962   .0006327629 2 2018
    end
    label values pais pais
    label def pais 1 "Argentina", modify
    label def pais 2 "Barbados", modify
    I would like to explain the growth in per capita CO2 emissions (ln_co2pc_gr) by one-year lagged level of per capita CO2 emissions (l.ln_co2pc_gr), the growth in per capita GDP (ln_gdppc_gr), changes in Energy Intensity (ei_ch.), and the change of the renewable share into the primary energy supply (res_share_ch).

    I have to compare results when:
    1. country and year fixed effects are omitted
    2. year fixed effects are omitted and country effects are added
    3. year fixed effects and country effects are added
    I do the following:

    Case 1. country and year fixed effects are omitted

    Code:
    . reg ln_co2pc_gr l.ln_co2pc res_share_ch ei_ch
    
          Source |       SS           df       MS      Number of obs   =     1,173
    -------------+----------------------------------   F(3, 1169)      =    204.16
           Model |  4.37886025         3  1.45962008   Prob > F        =    0.0000
        Residual |  8.35748358     1,169  .007149259   R-squared       =    0.3438
    -------------+----------------------------------   Adj R-squared   =    0.3421
           Total |  12.7363438     1,172  .010867188   Root MSE        =    .08455
    
    ------------------------------------------------------------------------------
     ln_co2pc_gr | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        ln_co2pc |
             L1. |  -.0050447   .0027289    -1.85   0.065    -.0103987    .0003094
                 |
    res_share_ch |  -.0207655   .0009512   -21.83   0.000    -.0226317   -.0188993
           ei_ch |   2.793124   .2764864    10.10   0.000     2.250659    3.335589
           _cons |    .048808   .0200982     2.43   0.015     .0093755    .0882406
    ------------------------------------------------------------------------------
    Case 2. year fixed effects are omitted and country effects are added.

    Code:
    . xtabond ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch, noconst
    
    Arellano–Bond dynamic panel-data estimation     Number of obs     =      1,126
    Group variable: pais                            Number of groups  =         25
    Time variable: year
                                                    Obs per group:
                                                                  min =         17
                                                                  avg =      45.04
                                                                  max =         47
    
    Number of instruments =    862                  Wald chi2(4)      =     968.45
                                                    Prob > chi2       =     0.0000
    One-step results
    ------------------------------------------------------------------------------
     ln_co2pc_gr | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
     ln_co2pc_gr |
             L1. |  -.1543293   .0217159    -7.11   0.000    -.1968917   -.1117669
                 |
     ln_gdppc_gr |   1.141223   .0654731    17.43   0.000     1.012898    1.269548
           ei_ch |   3.959746    .279658    14.16   0.000     3.411626    4.507865
    res_share_ch |  -.0172658   .0009338   -18.49   0.000     -.019096   -.0154355
    ------------------------------------------------------------------------------
    Instruments for differenced equation
            GMM-type: L(2/.).ln_co2pc_gr
            Standard: D.ln_gdppc_gr D.ei_ch D.res_share_ch
    Case 3. year fixed effects and country effects are added

    Code:
    . xtabond ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch yr*, noconst
    note: yr1 omitted from div() because of collinearity.
    note: yr2 omitted from div() because of collinearity.
    note: yr51 omitted from div() because of collinearity.
    note: yr1 omitted because of collinearity.
    note: yr2 omitted because of collinearity.
    note: yr51 omitted because of collinearity.
    
    Arellano–Bond dynamic panel-data estimation     Number of obs     =      1,126
    Group variable: pais                            Number of groups  =         25
    Time variable: year
                                                    Obs per group:
                                                                  min =         17
                                                                  avg =      45.04
                                                                  max =         47
    
    Number of instruments =    885                  Wald chi2(51)     =    1077.88
                                                    Prob > chi2       =     0.0000
    One-step results
    ------------------------------------------------------------------------------
     ln_co2pc_gr | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
     ln_co2pc_gr |
             L1. |  -.1699338   .0221739    -7.66   0.000    -.2133939   -.1264737
                 |
     ln_gdppc_gr |   1.189569   .0714606    16.65   0.000     1.049509    1.329629
           ei_ch |   3.926077   .2800375    14.02   0.000     3.377213     4.47494
    res_share_ch |  -.0164984   .0009514   -17.34   0.000    -.0183632   -.0146337
             yr3 |   .0086196   .0232371     0.37   0.711    -.0369241    .0541634
             yr4 |          0  (omitted)
             yr5 |  -.0095069    .023281    -0.41   0.683    -.0551368    .0361231
             yr6 |   .0047888   .0233236     0.21   0.837    -.0409246    .0505023
             yr7 |   .0116231   .0232843     0.50   0.618    -.0340132    .0572594
             yr8 |   .0150959   .0232158     0.65   0.516    -.0304061     .060598
             yr9 |   .0164546   .0232008     0.71   0.478    -.0290182    .0619273
            yr10 |  -.0110719   .0232537    -0.48   0.634    -.0566484    .0345045
            yr11 |  -.0092358    .023345    -0.40   0.692    -.0549912    .0365195
            yr12 |  -.0186959   .0233934    -0.80   0.424    -.0645461    .0271544
            yr13 |   .0080493   .0237823     0.34   0.735    -.0385631    .0546618
            yr14 |   .0179798   .0237258     0.76   0.449    -.0285219    .0644814
            yr15 |  -.0115345   .0234152    -0.49   0.622    -.0574275    .0343585
            yr16 |  -.0263228   .0233368    -1.13   0.259     -.072062    .0194165
            yr17 |   .0019019    .023264     0.08   0.935    -.0436948    .0474985
            yr18 |  -.0038237   .0231897    -0.16   0.869    -.0492747    .0416273
            yr19 |   .0215469   .0233356     0.92   0.356    -.0241901    .0672838
            yr20 |   .0036934   .0232789     0.16   0.874    -.0419324    .0493193
            yr21 |   .0050649   .0233687     0.22   0.828    -.0407368    .0508667
            yr22 |  -.0160545   .0232246    -0.69   0.489    -.0615739    .0294649
            yr23 |   .0200222   .0231971     0.86   0.388    -.0254433    .0654878
            yr24 |   .0051773   .0232444     0.22   0.824    -.0403809    .0507356
            yr25 |  -.0364671    .023216    -1.57   0.116    -.0819697    .0090355
            yr26 |   .0629364   .0231853     2.71   0.007      .017494    .1083787
            yr27 |   .0028832   .0232247     0.12   0.901    -.0426364    .0484029
            yr28 |   .0017144   .0231843     0.07   0.941     -.043726    .0471548
            yr29 |   .0132832   .0231714     0.57   0.566    -.0321318    .0586983
            yr30 |    .004425   .0232676     0.19   0.849    -.0411787    .0500287
            yr31 |  -.0367104   .0232841    -1.58   0.115    -.0823463    .0089256
            yr32 |   -.011032   .0233507    -0.47   0.637    -.0567986    .0347345
            yr33 |   .0140877   .0230807     0.61   0.542    -.0311496    .0593251
            yr34 |  -.0057824    .023058    -0.25   0.802    -.0509753    .0394105
            yr35 |   .0041397    .023038     0.18   0.857    -.0410139    .0492933
            yr36 |  -.0405128   .0230048    -1.76   0.078    -.0856013    .0045758
            yr37 |  -.0030994   .0230534    -0.13   0.893    -.0482832    .0420844
            yr38 |   .0040511   .0230197     0.18   0.860    -.0410668    .0491689
            yr39 |   .0035858   .0230256     0.16   0.876    -.0415436    .0487152
            yr40 |   .0079728   .0231945     0.34   0.731    -.0374876    .0534333
            yr41 |  -.0181299   .0233019    -0.78   0.437    -.0638007    .0275409
            yr42 |  -.0152946   .0232321    -0.66   0.510    -.0608287    .0302395
            yr43 |   .0048455   .0232524     0.21   0.835    -.0407284    .0504195
            yr44 |   -.025654   .0232216    -1.10   0.269    -.0711674    .0198595
            yr45 |  -.0201522   .0232677    -0.87   0.386    -.0657562    .0254517
            yr46 |   .0215768    .023257     0.93   0.354    -.0240061    .0671597
            yr47 |  -.0027177    .023233    -0.12   0.907    -.0482534    .0428181
            yr48 |  -.0274366   .0232932    -1.18   0.239    -.0730905    .0182172
            yr49 |  -.0159166   .0232996    -0.68   0.495    -.0615831    .0297498
            yr50 |    .012279   .0232845     0.53   0.598    -.0333577    .0579157
    ------------------------------------------------------------------------------
    Instruments for differenced equation
            GMM-type: L(2/.).ln_co2pc_gr
            Standard: D.ln_gdppc_gr D.ei_ch D.res_share_ch D.yr3 D.yr4 D.yr5
                      D.yr6 D.yr7 D.yr8 D.yr9 D.yr10 D.yr11 D.yr12 D.yr13 D.yr14
                      D.yr15 D.yr16 D.yr17 D.yr18 D.yr19 D.yr20 D.yr21 D.yr22
                      D.yr23 D.yr24 D.yr25 D.yr26 D.yr27 D.yr28 D.yr29 D.yr30
                      D.yr31 D.yr32 D.yr33 D.yr34 D.yr35 D.yr36 D.yr37 D.yr38
                      D.yr39 D.yr40 D.yr41 D.yr42 D.yr43 D.yr44 D.yr45 D.yr46
                      D.yr47 D.yr48 D.yr49 D.yr50
    Should I change to xtdpdgmm?

    Or I should use PVAR o Panel ARDL because is long panel?

    Thanks in advance,

    Sebastian.

  • #2
    Sebastian:
    see Sebastian Kripfganz ìs posts on dynamic panel data regressions.
    That said, I do not think that -regress- and -xtabond- can be compared, as they imply totally different methodological approaches.
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      With only 27 countries and up to 50 time periods, the Arellano-Bond estimator is usually not applicable. As you can see in your xtabond output, you got an enormous number of instruments, which creates all kinds of problems. Even if apply measures to reduce the number of instruments considerably, I would not expect a satisfactory finite-sample performance of the estimator with just 27 countries. A panel ARDL approach using a mean group or pooled mean group estimator might be more promissing. However, notice that the often applied common correlated effects estimator also typically requires a large number of countries.

      One option might be to simply estimate a classical fixed-effects regression with xtreg, fe. Given the relatively large number of time periods, the bias from including a lagged dependent variable might be negligible.
      https://www.kripfganz.de/stata/

      Comment


      • #4
        Sebastian,

        I should wait more dynamic panel model T/N>1 theory development.

        Maybe I can estimate a fixed-effects regression with Driscoll-Kraay standard errors.

        Regards,

        Sebastián.

        Comment


        • #5
          Can be used split-panel Jackknife bias corrections? I found an user Stata module called xtspj.

          Comment

          Working...
          X