Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Non-Equivalent Results for a <nestreg: svy: logit> and <svy: logit>?

    Hi Statalist,

    I'm running a logit model using svyset. My working assumption was that the final block for a <nestreg: svy: logit> would be identical to a non-blocked <svy: logit>. However, in the nestreg model it ended up kicking out the race variable but in the non-blocked model it was retained.

    To be clear, I'm running random (i.e., meaningless) data to ensure that my code executes properly for another project. My primary interest is why the non-equivalency emerged and whether it's something I need to test for in future projects.

    I ended up catching this because I was specifically interested in the <trans> variable.

    Code:
    . svy: logit new_acc_005 $group $covariates
    (running logit on estimation sample)
    
    BRR replications (1000)
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
    ..................................................    50
    ..................................................   100
    ..................................................   150
    ..................................................   200
    ..................................................   250
    ..................................................   300
    ..................................................   350
    ..................................................   400
    ..................................................   450
    ..................................................   500
    ..................................................   550
    ..................................................   600
    ..................................................   650
    ..................................................   700
    ..................................................   750
    ..................................................   800
    ..................................................   850
    ..................................................   900
    ..................................................   950
    ..................................................  1000
    
    note: race != 3 predicts failure perfectly
          race dropped and 4 obs not used
    
    Survey: Logistic regression                     Number of obs     =        399
                                                    Population size   = 935.167756
                                                    Replications      =      1,000
                                                    Design df         =      1,000
                                                    F(  15,    986)   =       1.97
                                                    Prob > F          =     0.0145
    
    ------------------------------------------------------------------------------
                 |                BRR *
     new_acc_005 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           trans |  -.1759338   1.145994    -0.15   0.878    -2.424762    2.072895
             sex |   .5387569   1.109846     0.49   0.627    -1.639137    2.716651
             age |   .0027263   .0065277     0.42   0.676    -.0100832    .0155358
             lgb |    -.13225   .1253307    -1.06   0.292    -.3781913    .1136913
           dreg2 |  -.1004513   .2031402    -0.49   0.621    -.4990813    .2981787
           dreg3 |   .0954237   .2092463     0.46   0.648    -.3151884    .5060358
           dreg4 |  -.1425171   .3434391    -0.41   0.678    -.8164611    .5314269
           dreg5 |   .0116557   .2155611     0.05   0.957    -.4113482    .4346596
           dreg6 |  -.5883021   .4049385    -1.45   0.147    -1.382929    .2063246
          deduc2 |    -.05574   .1437736    -0.39   0.698    -.3378725    .2263925
          deduc3 |  -.0733822   .2016822    -0.36   0.716    -.4691511    .3223867
            race |          0  (omitted)
           dbmi1 |   -.024893   .2165706    -0.11   0.909     -.449878    .4000919
           dbmi3 |  -.1846642   .1961027    -0.94   0.347    -.5694842    .2001559
           dbmi4 |  -.4033248   .1922317    -2.10   0.036    -.7805486   -.0261009
             inc |  -.0065554    .019577    -0.33   0.738    -.0449721    .0318613
           _cons |   .2090892   .2961285     0.71   0.480    -.3720154    .7901938
    ------------------------------------------------------------------------------
    
    . nestreg: svy: logit new_acc_005 ($covariates) ($group)
    note: race dropped because of estimability
    note: o.race dropped because of estimability
    
    Block  1: sex age lgb dreg2 dreg3 dreg4 dreg5 dreg6 deduc2 deduc3 dbmi1 dbmi3 dbmi4 inc
    (running logit on estimation sample)
    
    BRR replications (1000)
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
    ..................................................    50
    ..................................................   100
    ..................................................   150
    ..................................................   200
    ..................................................   250
    ..................................................   300
    ..................................................   350
    ..................................................   400
    ..................................................   450
    ..................................................   500
    ..................................................   550
    ..................................................   600
    ..................................................   650
    ..................................................   700
    ..................................................   750
    ..................................................   800
    ..................................................   850
    ..................................................   900
    ..................................................   950
    ..................................................  1000
    
    Survey: Logistic regression                     Number of obs     =        403
                                                    Population size   = 946.549165
                                                    Replications      =      1,000
                                                    Design df         =      1,000
                                                    F(  14,    987)   =       2.02
                                                    Prob > F          =     0.0139
    
    ------------------------------------------------------------------------------
                 |                BRR *
     new_acc_005 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             sex |    .326018   .1192416     2.73   0.006     .0920256    .5600104
             age |   .0022885    .006466     0.35   0.723    -.0104001    .0149771
             lgb |  -.1589832   .1267548    -1.25   0.210    -.4077191    .0897526
           dreg2 |   -.076847    .210202    -0.37   0.715    -.4893346    .3356407
           dreg3 |   .0427959   .2396131     0.18   0.858    -.4274063     .512998
           dreg4 |  -.1621691   .3660137    -0.44   0.658    -.8804121    .5560738
           dreg5 |   .0074862   .2124747     0.04   0.972    -.4094613    .4244337
           dreg6 |  -.5620513   .4126888    -1.36   0.174    -1.371887    .2477841
          deduc2 |  -.1048962   .1425214    -0.74   0.462    -.3845715    .1747792
          deduc3 |  -.1121259   .2031567    -0.55   0.581    -.5107882    .2865365
           dbmi1 |   .0050511   .2095763     0.02   0.981    -.4062088    .4163109
           dbmi3 |  -.2158093   .2265647    -0.95   0.341    -.6604061    .2287875
           dbmi4 |  -.4292535   .1811346    -2.37   0.018    -.7847009    -.073806
             inc |  -.0011619   .0194873    -0.06   0.952    -.0394026    .0370788
           _cons |   .2534628   .2992156     0.85   0.397    -.3336997    .8406252
    ------------------------------------------------------------------------------
    
    Block  2: trans
    (running logit on estimation sample)
    
    BRR replications (1000)
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
    ..................................................    50
    ..................................................   100
    ..................................................   150
    ..................................................   200
    ..................................................   250
    ..................................................   300
    ..................................................   350
    ..................................................   400
    ..................................................   450
    ..................................................   500
    ..................................................   550
    ..................................................   600
    ..................................................   650
    ..................................................   700
    ..................................................   750
    ..................................................   800
    ..................................................   850
    ..................................................   900
    ..................................................   950
    ..................................................  1000
    
    Survey: Logistic regression                     Number of obs     =        403
                                                    Population size   = 946.549165
                                                    Replications      =      1,000
                                                    Design df         =      1,000
                                                    F(  15,    986)   =       1.92
                                                    Prob > F          =     0.0181
    
    ------------------------------------------------------------------------------
                 |                BRR *
     new_acc_005 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             sex |   .4873062   1.089298     0.45   0.655    -1.650266    2.624879
             age |   .0023628   .0066682     0.35   0.723    -.0107224     .015448
             lgb |  -.1577184   .1257229    -1.25   0.210    -.4044294    .0889926
           dreg2 |  -.0763008   .2051487    -0.37   0.710    -.4788721    .3262705
           dreg3 |   .0472102   .2271976     0.21   0.835    -.3986286     .493049
           dreg4 |  -.1614056   .3623199    -0.45   0.656    -.8724002    .5495889
           dreg5 |   .0066607   .2130777     0.03   0.975      -.41147    .4247914
           dreg6 |   -.563992   .4060925    -1.39   0.165    -1.360883    .2328992
          deduc2 |   -.108043   .1467737    -0.74   0.462    -.3960628    .1799768
          deduc3 |  -.1143768   .2161698    -0.53   0.597    -.5385754    .3098217
           dbmi1 |   .0026271   .2140528     0.01   0.990     -.417417    .4226712
           dbmi3 |  -.2122906    .211283    -1.00   0.315    -.6268996    .2023184
           dbmi4 |   -.426041   .1876856    -2.27   0.023    -.7943439   -.0577381
             inc |  -.0007558    .019577    -0.04   0.969    -.0391726    .0376609
           trans |  -.1657635   1.136817    -0.15   0.884    -2.396584    2.065057
           _cons |   .2496266   .2960611     0.84   0.399    -.3313457    .8305988
    ------------------------------------------------------------------------------
    
    
      +-------------------------------------------+
      |       |          Block    Design          |
      | Block |       F     df        df   Pr > F |
      |-------+-----------------------------------|
      |     1 |    2.02     14      1000   0.0139 |
      |     2 |    0.02      1      1000   0.8841 |
      +-------------------------------------------+
    Thanks so much!

    Cheers,

    David.

  • #2
    So, are you asking why the first output and the last output differ? Did you check why they have i) different sample sizes and ii) different lineup of independent variables? The inclusion of race in the first model seems to have omitted 4 cases.
    Last edited by Ken Chui; 14 Feb 2022, 10:31.

    Comment


    • #3
      Ken Chui No, I understand that.

      To clarify, I'm asking why it would run fine in one case, but not run fine in an 'identical' case with the exact same specifications of variables. You can see that the same macros $covariates and $group are used in both cases. Race was included in both models, but only booted in one. The models were specified in the same way, except one was a nested model.

      Analogously:

      Code:
      regress y x1 x2
      nestreg: regress y (x1) (x2)
      Would, I assume, produce identical results and have identical observations. Except in the case listed initially, it runs it fine one way, but not the other way. This is what I'm confused about. Basically, if there's relevant multicollinearity then why didn't Stata 'complain' in both cases.

      Comment

      Working...
      X