Hi Statalist,
I'm running a logit model using svyset. My working assumption was that the final block for a <nestreg: svy: logit> would be identical to a non-blocked <svy: logit>. However, in the nestreg model it ended up kicking out the race variable but in the non-blocked model it was retained.
To be clear, I'm running random (i.e., meaningless) data to ensure that my code executes properly for another project. My primary interest is why the non-equivalency emerged and whether it's something I need to test for in future projects.
I ended up catching this because I was specifically interested in the <trans> variable.
Thanks so much!
Cheers,
David.
I'm running a logit model using svyset. My working assumption was that the final block for a <nestreg: svy: logit> would be identical to a non-blocked <svy: logit>. However, in the nestreg model it ended up kicking out the race variable but in the non-blocked model it was retained.
To be clear, I'm running random (i.e., meaningless) data to ensure that my code executes properly for another project. My primary interest is why the non-equivalency emerged and whether it's something I need to test for in future projects.
I ended up catching this because I was specifically interested in the <trans> variable.
Code:
. svy: logit new_acc_005 $group $covariates (running logit on estimation sample) BRR replications (1000) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 .................................................. 250 .................................................. 300 .................................................. 350 .................................................. 400 .................................................. 450 .................................................. 500 .................................................. 550 .................................................. 600 .................................................. 650 .................................................. 700 .................................................. 750 .................................................. 800 .................................................. 850 .................................................. 900 .................................................. 950 .................................................. 1000 note: race != 3 predicts failure perfectly race dropped and 4 obs not used Survey: Logistic regression Number of obs = 399 Population size = 935.167756 Replications = 1,000 Design df = 1,000 F( 15, 986) = 1.97 Prob > F = 0.0145 ------------------------------------------------------------------------------ | BRR * new_acc_005 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- trans | -.1759338 1.145994 -0.15 0.878 -2.424762 2.072895 sex | .5387569 1.109846 0.49 0.627 -1.639137 2.716651 age | .0027263 .0065277 0.42 0.676 -.0100832 .0155358 lgb | -.13225 .1253307 -1.06 0.292 -.3781913 .1136913 dreg2 | -.1004513 .2031402 -0.49 0.621 -.4990813 .2981787 dreg3 | .0954237 .2092463 0.46 0.648 -.3151884 .5060358 dreg4 | -.1425171 .3434391 -0.41 0.678 -.8164611 .5314269 dreg5 | .0116557 .2155611 0.05 0.957 -.4113482 .4346596 dreg6 | -.5883021 .4049385 -1.45 0.147 -1.382929 .2063246 deduc2 | -.05574 .1437736 -0.39 0.698 -.3378725 .2263925 deduc3 | -.0733822 .2016822 -0.36 0.716 -.4691511 .3223867 race | 0 (omitted) dbmi1 | -.024893 .2165706 -0.11 0.909 -.449878 .4000919 dbmi3 | -.1846642 .1961027 -0.94 0.347 -.5694842 .2001559 dbmi4 | -.4033248 .1922317 -2.10 0.036 -.7805486 -.0261009 inc | -.0065554 .019577 -0.33 0.738 -.0449721 .0318613 _cons | .2090892 .2961285 0.71 0.480 -.3720154 .7901938 ------------------------------------------------------------------------------ . nestreg: svy: logit new_acc_005 ($covariates) ($group) note: race dropped because of estimability note: o.race dropped because of estimability Block 1: sex age lgb dreg2 dreg3 dreg4 dreg5 dreg6 deduc2 deduc3 dbmi1 dbmi3 dbmi4 inc (running logit on estimation sample) BRR replications (1000) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 .................................................. 250 .................................................. 300 .................................................. 350 .................................................. 400 .................................................. 450 .................................................. 500 .................................................. 550 .................................................. 600 .................................................. 650 .................................................. 700 .................................................. 750 .................................................. 800 .................................................. 850 .................................................. 900 .................................................. 950 .................................................. 1000 Survey: Logistic regression Number of obs = 403 Population size = 946.549165 Replications = 1,000 Design df = 1,000 F( 14, 987) = 2.02 Prob > F = 0.0139 ------------------------------------------------------------------------------ | BRR * new_acc_005 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .326018 .1192416 2.73 0.006 .0920256 .5600104 age | .0022885 .006466 0.35 0.723 -.0104001 .0149771 lgb | -.1589832 .1267548 -1.25 0.210 -.4077191 .0897526 dreg2 | -.076847 .210202 -0.37 0.715 -.4893346 .3356407 dreg3 | .0427959 .2396131 0.18 0.858 -.4274063 .512998 dreg4 | -.1621691 .3660137 -0.44 0.658 -.8804121 .5560738 dreg5 | .0074862 .2124747 0.04 0.972 -.4094613 .4244337 dreg6 | -.5620513 .4126888 -1.36 0.174 -1.371887 .2477841 deduc2 | -.1048962 .1425214 -0.74 0.462 -.3845715 .1747792 deduc3 | -.1121259 .2031567 -0.55 0.581 -.5107882 .2865365 dbmi1 | .0050511 .2095763 0.02 0.981 -.4062088 .4163109 dbmi3 | -.2158093 .2265647 -0.95 0.341 -.6604061 .2287875 dbmi4 | -.4292535 .1811346 -2.37 0.018 -.7847009 -.073806 inc | -.0011619 .0194873 -0.06 0.952 -.0394026 .0370788 _cons | .2534628 .2992156 0.85 0.397 -.3336997 .8406252 ------------------------------------------------------------------------------ Block 2: trans (running logit on estimation sample) BRR replications (1000) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 .................................................. 250 .................................................. 300 .................................................. 350 .................................................. 400 .................................................. 450 .................................................. 500 .................................................. 550 .................................................. 600 .................................................. 650 .................................................. 700 .................................................. 750 .................................................. 800 .................................................. 850 .................................................. 900 .................................................. 950 .................................................. 1000 Survey: Logistic regression Number of obs = 403 Population size = 946.549165 Replications = 1,000 Design df = 1,000 F( 15, 986) = 1.92 Prob > F = 0.0181 ------------------------------------------------------------------------------ | BRR * new_acc_005 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .4873062 1.089298 0.45 0.655 -1.650266 2.624879 age | .0023628 .0066682 0.35 0.723 -.0107224 .015448 lgb | -.1577184 .1257229 -1.25 0.210 -.4044294 .0889926 dreg2 | -.0763008 .2051487 -0.37 0.710 -.4788721 .3262705 dreg3 | .0472102 .2271976 0.21 0.835 -.3986286 .493049 dreg4 | -.1614056 .3623199 -0.45 0.656 -.8724002 .5495889 dreg5 | .0066607 .2130777 0.03 0.975 -.41147 .4247914 dreg6 | -.563992 .4060925 -1.39 0.165 -1.360883 .2328992 deduc2 | -.108043 .1467737 -0.74 0.462 -.3960628 .1799768 deduc3 | -.1143768 .2161698 -0.53 0.597 -.5385754 .3098217 dbmi1 | .0026271 .2140528 0.01 0.990 -.417417 .4226712 dbmi3 | -.2122906 .211283 -1.00 0.315 -.6268996 .2023184 dbmi4 | -.426041 .1876856 -2.27 0.023 -.7943439 -.0577381 inc | -.0007558 .019577 -0.04 0.969 -.0391726 .0376609 trans | -.1657635 1.136817 -0.15 0.884 -2.396584 2.065057 _cons | .2496266 .2960611 0.84 0.399 -.3313457 .8305988 ------------------------------------------------------------------------------ +-------------------------------------------+ | | Block Design | | Block | F df df Pr > F | |-------+-----------------------------------| | 1 | 2.02 14 1000 0.0139 | | 2 | 0.02 1 1000 0.8841 | +-------------------------------------------+
Cheers,
David.
Comment