I am writing my thesis about CO2 emissions'determinants: lagged CO2, GDP, energy intensity and share of renewable energies into the primary energy.
I do it:
1- Pooled OLS
2- Chow Test in the estimation FE - With this test I verified that pooled is better FE
3- Modified Wald test for groupwise heteroskedasticity - The result indicates that i have to reject H0. So I have heteroskedasticity.
3' - Following FAQ: Testing for panel-level heteroskedasticity and autocorrelation | Stata to test heteroskedasticity - The result indicates that i have to reject H0. So I have heteroskedasticity.
4 - Breusch-Pagan LM test for cross-sectional correlation in fixed effects model - The result indicates that i can't reject H0. So I don't have cross-sectional correlation.
5 - Estimation with RE
6 - tests of overidentifying restrictions - Why fail?
7 - Breusch Pagan Test - With this test I verified that pooled is better than RE
8 - Hausman Test - With this test I verified that FE is better than RE
9 - Wooldrigde Test for autocorrelation in panel data - i can reject H0. So I have first-order autocorrelation
So I decide to do it:
10 – The last step was the estimation with xtgls with the option panels (heteroskedastic) and corr(ar1).
Is it wise to use xtgls or are better options?
Thanks in advance,
Sebastián.
I do it:
1- Pooled OLS
Code:
reg ln_co2pc_gr l.ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch estimates store pooled
Source SS df MS Number of obs = 987 F(4, 982) = 271.95 Model 5.83456066 4 1.45864016 Prob > F = 0.0000 Residual 5.26702695 982 .005363571 R-squared = 0.5256 Adj R-squared = 0.5236 Total 11.1015876 986 .011259217 Root MSE = .07324 ln_co2pc_gr Coefficient Std. err. t P>t [95% conf. interval] ln_co2pc_gr L1. -.1760077 .0223423 -7.88 0.000 -.2198518 -.1321636 ln_gdppc_gr 1.173666 .0611717 19.19 0.000 1.053623 1.293708 ei_ch 6.246011 .4014166 15.56 0.000 5.458278 7.033744 res_share_ch -.0167874 .0008761 -19.16 0.000 -.0185066 -.0150682 _cons .0000834 .0024518 0.03 0.973 -.0047279 .0048946
Code:
xtreg ln_co2pc_gr l.ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch,fe estimates store fixed
Fixed-effects (within) regression Number of obs = 987 Group variable: pais Number of groups = 21 R-squared: Obs per group: Within = 0.5277 min = 47 Between = 0.3574 avg = 47.0 Overall = 0.5254 max = 47 F(4,962) = 268.67 corr(u_i, Xb) = -0.0369 Prob > F = 0.0000 ln_co2pc_gr Coefficient Std. err. t P>t [95% conf. interval] ln_co2pc_gr L1. -.182082 .0225374 -8.08 0.000 -.2263102 -.1378538 ln_gdppc_gr 1.202518 .0628348 19.14 0.000 1.079209 1.325827 ei_ch 6.177734 .4055494 15.23 0.000 5.381871 6.973597 res_share_ch -.0166086 .0008886 -18.69 0.000 -.0183525 -.0148648 _cons -.0001908 .002465 -0.08 0.938 -.0050283 .0046467 sigma_u .00889845 sigma_e .07348315 rho .01445209 (fraction of variance due to u_i) F test that all u_i=0: F(20, 962) = 0.67 Prob > F = 0.8574
Code:
xttest3
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i chi2 (21) = 5626.37 Prob>chi2 = 0.0000
Code:
xtgls ln_co2pc_gr l.ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch, igls panels(heteroskedastic) estimates store heteroxtgls ln_co2pc_gr l.ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch, igls
Iteration 1: tolerance = .01253158 Iteration 2: tolerance = .00224603 Iteration 3: tolerance = .00018464 Iteration 4: tolerance = .00008188 Iteration 5: tolerance = .00006792 Iteration 6: tolerance = .00003587 Iteration 7: tolerance = .0000168 Iteration 8: tolerance = 7.513e-06 Iteration 9: tolerance = 3.295e-06 Iteration 10: tolerance = 1.432e-06 Iteration 11: tolerance = 6.200e-07 Iteration 12: tolerance = 2.679e-07 Iteration 13: tolerance = 1.157e-07 Iteration 14: tolerance = 4.992e-08 Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: no autocorrelation Estimated covariances = 21 Number of obs = 987 Estimated autocorrelations = 0 Number of groups = 21 Estimated coefficients = 5 Time periods = 47 Wald chi2(4) = 3209.74 Log likelihood = 1666.573 Prob > chi2 = 0.0000 ln_co2pc_gr Coefficient Std. err. z P>z [95% conf. interval] ln_co2pc_gr L1. -.0365769 .0157667 -2.32 0.020 -.067479 -.0056748 ln_gdppc_gr .966336 .0285631 33.83 0.000 .9103533 1.022319 ei_ch 6.084885 .1788927 34.01 0.000 5.734262 6.435508 res_share_ch -.0150411 .0005018 -29.97 0.000 -.0160246 -.0140576 _cons -.0009792 .0011706 -0.84 0.403 -.0032736 .0013152 local df = e(N_g) - 1 lrtest hetero . , df(`df')
Iteration 1: tolerance = 0 Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: homoskedastic Correlation: no autocorrelation Estimated covariances = 1 Number of obs = 987 Estimated autocorrelations = 0 Number of groups = 21 Estimated coefficients = 5 Time periods = 47 Wald chi2(4) = 1093.35 Log likelihood = 1182.094 Prob > chi2 = 0.0000 ln_co2pc_gr Coefficient Std. err. z P>z [95% conf. interval] ln_co2pc_gr L1. -.1760077 .0222856 -7.90 0.000 -.2196867 -.1323287 ln_gdppc_gr 1.173666 .0610166 19.24 0.000 1.054075 1.293256 ei_ch 6.246011 .4003985 15.60 0.000 5.461244 7.030778 res_share_ch -.0167874 .0008738 -19.21 0.000 -.0185001 -.0150747 _cons .0000834 .0024455 0.03 0.973 -.0047098 .0048765
Likelihood-ratio test Assumption: . nested within hetero LR chi2(20) = 968.96 Prob > chi2 = 0.0000
Code:
xttest2
Correlation matrix of residuals: __e1 __e4 __e5 __e6 __e7 __e8 __e10 __e11 __e13 __e14 __e15 __e16 __e17 __e18 __e1 1.0000 __e4 0.0230 1.0000 __e5 0.1774 -0.2663 1.0000 __e6 -0.0815 -0.1596 0.3337 1.0000 __e7 0.0378 -0.0339 0.0931 -0.4827 1.0000 __e8 -0.0775 0.0884 -0.1391 0.0130 -0.2160 1.0000 __e10 0.1728 -0.1214 0.3537 -0.0791 0.0612 -0.0255 1.0000 __e11 -0.0227 -0.1197 0.2107 0.1892 0.0045 0.1437 0.1316 1.0000 __e13 -0.0605 -0.2207 -0.0571 0.0261 0.0191 0.0425 0.0010 0.0492 1.0000 __e14 0.0869 -0.0064 0.0060 -0.1281 -0.0103 0.0488 0.1306 0.0719 -0.0029 1.0000 __e15 0.1708 -0.1080 0.0993 0.0243 0.0373 -0.2299 0.1401 -0.0315 -0.1551 0.2435 1.0000 __e16 0.0628 0.0825 0.0666 0.2075 -0.0526 0.1230 -0.0705 0.0390 -0.0794 0.2468 -0.0093 1.0000 __e17 0.0355 -0.0747 0.2266 -0.0418 -0.0541 -0.2315 0.2137 -0.0571 0.1571 0.0463 -0.1197 -0.0884 1.0000 __e18 0.1185 0.1001 0.2537 0.1797 -0.1182 0.2911 -0.0325 0.1856 -0.2174 0.1771 0.1690 0.1377 -0.2270 1.0000 __e19 -0.1699 -0.2237 0.1343 0.0290 0.0353 0.2445 -0.0164 0.3058 0.1293 0.0199 -0.0604 -0.0287 -0.3070 0.0850 __e20 -0.2560 -0.0242 0.0560 -0.0847 0.3125 -0.0103 -0.0130 0.1775 0.0206 -0.1220 0.0793 0.2789 0.0166 0.0722 __e21 0.1885 -0.1850 0.2959 0.0675 0.1458 0.0512 0.2397 0.1864 0.3013 0.0005 -0.0682 -0.0539 0.0846 0.2271 __e22 0.1250 0.0499 -0.1973 -0.0485 0.1092 0.0224 -0.0751 -0.2712 0.0114 0.0947 0.2086 0.0161 -0.0104 0.0202 __e23 0.0544 0.0267 0.1008 0.0286 -0.1474 0.0368 0.1464 0.2453 0.0411 0.0314 -0.0384 0.0662 0.0609 0.0481 __e24 -0.0303 0.1201 -0.0874 0.0920 -0.0274 -0.0487 -0.0419 0.0871 0.0408 0.0059 0.0166 0.0027 0.1309 -0.0986 __e26 0.4876 -0.0495 0.4233 0.3092 0.0435 -0.0122 0.3230 0.3330 -0.0773 -0.0259 0.2067 0.1298 0.1149 0.1722 __e19 __e20 __e21 __e22 __e23 __e24 __e26 __e19 1.0000 __e20 0.0276 1.0000 __e21 0.2877 0.1445 1.0000 __e22 0.0194 0.0504 0.1057 1.0000 __e23 0.2771 0.0291 0.2581 -0.0727 1.0000 __e24 -0.0341 0.0722 -0.1132 0.1107 -0.0321 1.0000 __e26 -0.0919 0.0470 0.2584 0.0817 0.1381 -0.0107 1.0000 Breusch-Pagan LM test of independence: chi2(210) = 224.533, Pr = 0.2340 Based on 46 complete observations over panel units
Code:
xtreg ln_co2pc_gr l.ln_co2pc_gr ln_gdppc_gr ei_ch res_share_ch, re estimates store random
Random-effects GLS regression Number of obs = 987 Group variable: pais Number of groups = 21 R-squared: Obs per group: Within = 0.5275 min = 47 Between = 0.3787 avg = 47.0 Overall = 0.5256 max = 47 Wald chi2(4) = 1087.81 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ln_co2pc_gr Coefficient Std. err. z P>z [95% conf. interval] ln_co2pc_gr L1. -.1760077 .0223423 -7.88 0.000 -.2197977 -.1322176 ln_gdppc_gr 1.173666 .0611717 19.19 0.000 1.053771 1.29356 ei_ch 6.246011 .4014166 15.56 0.000 5.459249 7.032773 res_share_ch -.0167874 .0008761 -19.16 0.000 -.0185044 -.0150703 _cons .0000834 .0024518 0.03 0.973 -.004722 .0048887 sigma_u 0 sigma_e .07348315 rho 0 (fraction of variance due to u_i)
Code:
xtoverid
Error - saved RE estimates are degenerate (sigma_u=0) and equivalent to pooled OLS r(198);
Code:
xttest0
Breusch and Pagan Lagrangian multiplier test for random effects ln_co2pc_gr[pais,t] = Xb + u[pais] + e[pais,t] Estimated results: Var SD = sqrt(Var) ln_co2p~r .0112592 .1061095 e .0053998 .0734831 u 0 0 Test: Var(u) = 0 chibar2(01) = 0.00 Prob > chibar2 = 1.0000
Code:
hausman fixed random, sigmamore
Coefficients ---- (b) (B) (b-B) sqrt(diag(V_b V_B)) fixed random Difference Std. err. ln_co2pc_gr L1. -.182082 -.1760077 -.0060743 .0023138 ln_gdppc_gr 1.202518 1.173666 .0288517 .0134072 ei_ch 6.177734 6.246011 -.0682771 .0472479 res_share_ch -.0166086 -.0167874 .0001788 .0001298 b = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg. Test of H0: Difference in coefficients not systematic chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 12.28 Prob > chi2 = 0.0154
Code:
xtserial ln_co2pc_gr ln_co2pc_gr_1 ln_gdppc_gr ei_ch res_share_ch
Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F( 1, 20) = 46.802 Prob > F = 0.0000
10 – The last step was the estimation with xtgls with the option panels (heteroskedastic) and corr(ar1).
Code:
xtgls ln_co2pc_gr ln_co2pc_gr_1 ln_gdppc_gr ei_ch res_share_ch, panels(heteroskedastic) corr(ar1)
Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: common AR(1) coefficient for all panels (-0.0149) Estimated covariances = 21 Number of obs = 1,008 Estimated autocorrelations = 1 Number of groups = 21 Estimated coefficients = 5 Time periods = 48 Wald chi2(4) = 2909.76 Prob > chi2 = 0.0000 ln_co2pc_gr Coefficient Std. err. z P>z [95% conf. interval] ln_co2pc_gr_1 -.0412811 .0166903 -2.47 0.013 -.0739934 -.0085687 ln_gdppc_gr .9839163 .0317807 30.96 0.000 .9216273 1.046205 ei_ch 6.192212 .1930138 32.08 0.000 5.813912 6.570512 res_share_ch -.0155283 .0005325 -29.16 0.000 -.0165719 -.0144847 _cons -.0007851 .0012703 -0.62 0.537 -.0032749 .0017046
Thanks in advance,
Sebastián.
Comment