Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • ologit, margins- Problem to obtain margins

    Good morning, I'm running an ordered logistic regression
    The model is the following
    Code:
     eststo: quietly ologit satisfaction_overall i.migrant_groupw1 c.age##c.age i.education i.sex i.occupation  i.Married i.year i.Countryoforign i.region_name if working==1, vce(cluster region_name)
    the dataset is
    [CODE]
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int satisfaction_overall float migrant_groupw1 byte age float(education sex) byte occupation float Married int year float(Countryoforign region_name working)
     9 0 34 6 1 2 1 2019 0  3 1
     7 0 30 6 2 2 0 2015 0  3 1
    10 0 60 2 1 8 1 2014 0  3 1
    10 0 50 3 1 6 1 2014 0  3 1
     5 0 50 3 2 6 1 2018 0  5 1
     5 0 40 5 1 6 1 2017 0  1 1
    10 0 39 5 2 3 1 2015 0  5 1
     8 0 40 6 2 2 1 2017 0 19 1
     8 0 60 3 1 6 1 2019 0  1 1
     7 0 35 5 2 4 1 2014 0  9 1
     7 0 29 6 1 4 0 2018 0  5 1
     8 0 47 5 2 4 1 2016 0  9 1
     8 0 55 5 2 3 1 2017 0 19 1
     9 0 51 6 1 3 0 2019 0  3 1
    10 0 64 2 2 6 1 2017 0  2 1
     8 0 44 3 1 5 0 2018 0  5 1
     8 0 59 6 2 3 1 2019 0  1 1
     8 0 60 5 2 2 1 2014 0 17 1
     6 0 34 5 1 6 1 2015 0  3 1
     7 0 57 5 2 3 1 2015 0 19 1
     7 0 42 3 2 6 1 2020 0  9 1
    10 0 31 5 1 7 0 2018 0  5 1
     7 0 61 6 2 2 1 2020 0  9 1
     8 0 28 5 1 6 0 2020 0  1 1
     6 0 47 3 1 6 0 2018 0  1 1
     6 0 65 3 1 3 1 2019 0 15 1
     6 0 52 3 1 5 1 2018 0 15 1
     6 0 38 6 1 2 1 2017 0  6 1
     9 0 32 3 1 6 1 2018 0  6 1
     7 0 48 6 2 2 0 2018 0 19 1
     8 0 48 5 2 3 1 2019 0  8 1
     8 0 52 3 2 5 1 2015 0 12 1
     8 0 33 6 1 2 0 2019 0  2 1
     7 0 57 4 2 4 1 2018 0  6 1
     9 0 40 6 2 2 0 2018 0  8 1
     7 0 41 5 2 7 1 2016 0  1 1
     8 0 75 6 1 2 1 2014 0 12 1
     7 0 42 6 2 4 1 2020 0 19 1
    10 0 22 5 1 3 0 2018 0 18 1
     8 0 45 6 1 1 1 2017 0  5 1
     8 0 18 3 1 8 0 2016 0 20 1
     7 0 29 5 1 5 0 2017 0 10 1
     6 0 47 6 2 3 0 2017 0  5 1
     7 0 43 5 2 5 1 2020 0 20 1
     7 0 45 4 1 7 0 2018 0  5 1
     8 0 52 6 2 2 1 2016 0  5 1
     7 0 23 5 2 4 0 2017 0  2 1
     5 0 60 3 1 7 1 2018 0  8 1
     6 0 51 3 1 8 1 2019 0  3 1
     6 0 55 3 1 6 1 2015 0 13 1
     8 0 60 3 2 8 1 2017 0 20 1
     . 0 46 5 1 3 1 2016 0  3 1
     7 0 57 4 2 4 1 2015 0  7 1
     7 0 54 5 2 5 1 2020 0  1 1
     8 0 64 5 1 4 1 2019 0  5 1
     8 0 61 3 1 1 1 2020 0 10 1
     7 0 48 3 1 6 1 2016 0  3 1
     8 0 75 3 1 1 1 2019 0  3 1
     8 0 44 4 2 3 1 2018 0  4 1
    10 0 62 5 2 4 1 2020 0  5 1
     9 0 38 5 1 4 0 2019 0 20 1
     8 0 33 6 2 2 0 2014 0  1 1
     . 0 35 5 1 6 1 2018 0 19 1
    10 0 49 6 2 2 1 2014 0  5 1
     8 0 48 3 1 7 0 2020 0  6 1
     8 0 29 6 1 2 0 2020 0  9 1
     9 0 55 3 1 6 0 2014 0  5 1
     8 0 50 5 2 2 1 2017 0  8 1
     7 0 39 6 2 2 0 2017 0  1 1
    10 0 41 6 2 2 0 2015 0 20 1
     9 0 49 3 1 6 1 2018 0 11 1
     5 0 44 3 1 6 1 2016 0 16 1
    10 0 46 3 1 6 1 2016 0  1 1
     5 0 41 3 1 8 0 2014 0 19 1
     7 0 48 5 2 3 1 2019 0  1 1
     6 0 45 5 1 4 1 2014 0  5 1
     8 0 32 5 1 3 0 2014 0 12 1
     7 0 51 3 2 4 1 2016 0  3 1
     7 0 57 3 2 5 1 2020 0  6 1
     6 0 51 3 1 7 1 2014 0  9 1
     7 0 49 5 2 5 1 2019 0  4 1
     4 0 61 6 1 3 1 2019 0  7 1
     6 0 45 6 2 4 1 2018 0  6 1
    10 0 53 5 2 2 1 2020 0 12 1
     5 0 55 3 2 6 1 2017 0  5 1
     4 0 33 6 2 4 0 2019 0 18 1
     7 0 53 5 1 5 1 2016 0  7 1
     9 0 37 6 1 3 0 2020 0  1 1
     8 0 23 5 2 5 0 2015 0 12 1
     9 0 45 5 1 9 0 2019 0  6 1
     6 0 51 3 1 7 1 2014 0  6 1
     7 0 43 6 1 9 1 2019 0  3 1
     8 0 43 5 2 5 1 2014 0  4 1
     7 0 59 5 2 3 1 2017 0  4 1
     8 0 31 4 1 5 0 2018 0  4 1
     8 0 38 3 2 8 1 2015 0 20 1
     5 0 44 3 1 7 1 2015 0 20 1
     6 0 56 3 1 4 1 2015 0  9 1
     6 0 51 3 2 8 1 2016 0  8 1
     9 0 29 6 1 2 0 2017 0  3 1
     8 2 32 3 1 5 1 2018 301  4 1
     8 2 25 3 1 8 0 2018 301  4 1
     7 2 26 3 1 5 0 2016 301  6 1
     8 2 24 4 1 6 0 2017 301  8 1
     8 2 25 5 1 8 1 2017 301  4 1
     7 2 28 1 1 6 1 2020 301 17 1
     7 2 28 3 1 8 0 2018 301 11 1
     5 2 30 3 1 7 1 2014 301  8 1
     7 2 25 3 1 8 1 2018 301 11 1
    10 2 23 3 1 6 0 2017 301  8 1
     7 2 32 3 1 6 1 2016 301  4 1
     5 2 31 1 1 8 0 2019 301 12 1
     8 2 28 3 1 7 0 2019 301  1 1
     7 2 26 3 1 6 1 2018 301 11 1
     7 2 34 3 1 8 1 2020 301  4 1
     6 2 29 3 1 6 0 2017 301  8 1
     5 2 24 3 1 3 1 2014 301 11 1
     9 2 37 5 1 5 1 2019 305 12 1
     6 2 40 5 1 6 1 2019 305  3 1
    10 2 29 5 1 6 0 2014 333  4 1
     8 2 31 3 1 8 1 2014 333  4 1
     7 2 38 3 1 3 0 2020 333  4 1
     7 2 26 5 1 8 0 2018 333 16 1
     9 2 38 3 1 6 1 2016 333  4 1
     5 2 22 5 2 8 1 2019 344  4 1
     4 2 52 1 1 8 1 2019 344  5 1
     9 2 20 3 1 8 0 2020 344  4 1
     9 2 18 3 1 8 0 2020 344  4 1
     7 2 21 1 1 8 0 2018 344  7 1
     4 2 20 4 2 8 0 2018 344  4 1
     0 2 45 5 1 8 0 2020 404  3 1
     7 2 29 1 1 8 0 2019 404 20 1
     5 2 20 3 2 5 0 2019 404 10 1
     6 2 47 3 1 8 1 2019 404 15 1
     8 2 19 4 1 6 0 2020 404  1 1
     7 2 27 3 2 8 1 2020 404  8 1
     6 2 25 3 2 8 1 2019 404 10 1
     6 2 42 1 1 8 0 2020 404  9 1
     7 2 57 5 1 8 1 2019 409 16 1
     7 2 22 2 1 8 0 2019 409 20 1
     7 2 21 3 1 8 0 2019 422 16 1
     8 2 22 3 1 6 0 2020 422 19 1
     5 2 21 3 1 8 0 2020 422 12 1
     5 2 27 3 1 8 0 2020 422 16 1
     7 2 21 1 1 6 0 2019 422 19 1
     4 2 22 3 1 5 0 2020 422 19 1
     6 2 31 2 1 8 1 2019 422 19 1
     8 2 26 6 1 8 1 2019 422  8 1
     0 2 28 5 1 8 0 2020 422  4 1
    10 2 25 3 1 6 0 2020 422  4 1
     7 2 22 3 1 6 0 2020 422  1 1
     8 2 23 3 1 7 0 2018 423  8 1
     8 2 30 3 1 5 0 2020 423  9 1
     6 2 55 1 1 8 1 2020 423 15 1
     6 2 36 2 1 8 0 2018 423  9 1
     7 2 24 4 1 8 0 2020 423  5 1
     7 2 32 2 1 6 0 2020 423  8 1
     6 2 38 2 2 8 1 2018 423 19 1
    10 2 32 5 1 6 1 2019 425  9 1
     4 2 43 2 1 8 1 2019 425 15 1
     9 2 21 3 1 6 1 2020 425 19 1
     8 2 22 3 1 5 0 2019 425  2 1
     3 2 20 3 1 8 0 2018 425 12 1
     8 2 22 3 1 8 0 2018 425 12 1
     3 2 21 1 1 8 0 2019 435 18 1
     7 2 41 3 1 8 0 2019 435 11 1
     4 2 26 3 1 8 1 2019 435  8 1
     7 2 50 3 1 6 1 2014 435 18 1
     8 2 32 2 1 6 1 2017 435  3 1
     6 2 19 3 1 8 0 2020 435  1 1
     5 2 21 1 1 8 0 2017 435 15 1
     5 2 22 3 1 2 0 2019 435 19 1
     8 2 26 3 1 6 0 2020 435  9 1
     8 2 36 5 1 6 1 2018 435  3 1
     6 2 39 2 1 8 1 2018 435 15 1
     8 2 32 3 1 7 0 2018 435  5 1
     6 2 33 1 1 6 1 2018 435 10 1
     9 2 30 3 1 8 1 2020 435  4 1
     7 2 30 3 1 5 0 2016 435  5 1
     7 2 46 2 1 8 1 2019 435 12 1
     7 2 29 5 1 8 0 2020 443  8 1
     8 2 35 3 1 6 0 2020 443  1 1
     6 2 29 2 1 8 0 2019 443 11 1
     6 2 22 3 1 5 0 2018 443 12 1
     8 2 26 3 2 5 0 2020 443  4 1
     6 2 31 2 1 8 0 2018 443 16 1
    10 2 28 5 1 5 0 2019 443  2 1
    10 2 20 3 2 5 0 2018 443 12 1
     5 2 31 1 1 8 0 2018 443 12 1
     7 2 28 3 2 8 1 2020 443  5 1
     6 2 22 3 1 8 0 2019 443  5 1
     7 2 31 3 1 8 0 2019 443 17 1
     5 2 37 6 1 6 1 2020 443 13 1
     . 2 25 3 1 8 0 2019 443 10 1
     8 2 25 3 1 6 1 2020 443 11 1
     6 2 44 2 1 8 1 2020 443  6 1
     7 2 26 5 1 8 0 2020 443  8 1
     6 2 29 3 2 8 1 2020 443 15 1
     6 2 24 3 1 8 0 2020 443 12 1
     5 2 34 3 2 8 1 2020 443  5 1
     5 1 20 3 1 6 0 2019 201 11 1
     7 1 24 6 2 6 1 2019 201  6 1
     4 1 23 3 1 4 0 2017 201  7 1
     8 1 20 2 1 7 0 2014 201  3 1
     5 1 68 5 1 7 1 2018 201  9 1
     8 1 40 5 2 5 1 2014 201  3 1
     6 1 28 3 2 5 0 2020 201  9 1
     7 1 37 5 1 6 1 2020 201  7 1
     7 1 27 3 2 8 1 2018 201  1 1
     7 1 29 3 1 6 0 2015 201  8 1
     7 1 30 3 1 6 1 2018 201  2 1
     6 1 41 3 1 6 1 2015 201  1 1
     8 1 33 3 1 6 1 2017 201  7 1
     7 1 24 3 2 5 1 2015 201 17 1
     2 1 35 3 2 5 1 2020 201  4 1
     6 1 33 3 2 5 1 2016 201  6 1
     7 1 31 3 1 6 1 2018 201  2 1
     5 1 25 3 1 5 0 2019 201 19 1
     8 1 30 6 1 5 1 2020 201  5 1
     . 1 53 2 1 6 1 2015 201  3 1
     7 1 24 5 1 7 0 2016 201  8 1
     9 1 27 3 1 7 1 2019 201  1 1
     7 1 32 3 1 6 1 2015 201  3 1
     9 1 33 6 2 2 1 2017 201  1 1
     7 1 42 3 1 6 1 2017 201  6 1
    10 1 22 3 2 5 0 2018 201 10 1
    10 1 24 3 1 5 1 2017 201  7 1
    10 1 27 5 1 5 0 2017 201  9 1
     4 1 25 6 2 8 1 2017 201 11 1
     6 1 29 1 2 8 1 2017 201 10 1
     5 1 52 3 1 8 1 2016 201 16 1
     4 1 25 3 2 8 1 2019 201  9 1
     9 1 60 4 1 5 1 2020 201  4 1
     4 1 30 3 2 7 1 2020 201  9 1
     8 1 24 5 1 8 0 2020 201  1 1
     7 1 30 3 1 6 1 2020 201 16 1
     8 1 31 4 1 6 0 2020 201  1 1
     8 1 38 3 1 6 1 2015 201  3 1
     7 1 36 3 2 5 1 2016 201  7 1
     6 1 30 1 1 6 0 2017 201  7 1
     7 1 35 3 2 8 1 2020 201  2 1
     5 1 34 3 1 8 0 2019 201  1 1
     8 1 31 5 1 6 1 2018 201 11 1
     7 1 33 3 1 6 1 2019 201 11 1
     7 1 27 6 2 8 1 2017 201  7 1
     6 1 29 3 2 8 1 2020 201  8 1
     9 1 31 3 1 6 1 2019 201  3 1
     8 1 26 5 2 5 1 2018 201 10 1
     4 1 22 3 1 8 0 2018 201  9 1
     5 1 38 6 1 3 1 2016 201  1 1
     8 1 30 3 1 6 1 2017 201  7 1
     6 1 27 3 1 6 0 2018 201  8 1
     9 1 30 5 1 8 1 2014 201  8 1
     . 1 32 3 1 6 0 2017 201  8 1
     7 1 48 5 1 5 0 2019 201 16 1
     7 1 30 3 1 7 1 2018 201 11 1
     8 1 58 3 1 8 1 2014 201  8 1
     9 1 58 3 1 8 1 2018 201  1 1
     7 1 27 3 2 7 1 2015 201  8 1
    10 1 45 3 1 6 1 2019 201  4 1
     8 1 31 3 2 8 1 2020 201  1 1
    10 1 62 6 1 1 1 2019 201  6 1
     7 1 25 3 2 5 1 2017 201  1 1
     6 1 26 1 1 6 0 2014 201  7 1
     8 1 24 4 1 7 0 2020 201  1 1
     7 1 29 5 1 8 0 2019 201  8 1
     8 1 35 3 1 8 1 2020 201  4 1
     8 1 29 3 2 8 1 2018 201  7 1
     7 1 38 3 1 8 1 2017 201  8 1
    10 1 23 3 2 5 0 2019 201  2 1
     6 1 25 5 2 8 1 2020 201  3 1
     4 1 42 6 2 2 1 2019 201  8 1
     7 1 26 6 2 8 1 2018 201  4 1
     6 1 45 3 2 5 0 2017 201 14 1
     6 1 34 4 1 8 0 2020 201 16 1
     6 1 25 3 1 6 0 2016 201 18 1
     9 1 25 3 2 7 1 2019 201  8 1
    10 1 33 6 1 8 1 2018 201  7 1
     . 1 38 6 2 5 1 2018 201  2 1
    10 1 56 3 2 8 1 2019 201  6 1
     8 1 35 3 2 5 1 2019 201  4 1
     6 1 23 3 2 8 1 2019 201 16 1
     5 1 23 5 2 8 1 2019 201  8 1
     7 1 40 3 1 8 1 2016 201  8 1
     3 1 46 3 1 8 1 2019 201  7 1
     5 1 32 3 1 8 1 2016 201 10 1
     8 1 35 5 1 6 1 2014 201  3 1
     7 1 28 4 1 6 0 2017 201  1 1
     7 1 39 4 1 6 1 2020 201  3 1
     4 1 32 3 1 8 1 2019 201  8 1
     9 1 31 6 2 5 1 2015 201  4 1
     5 1 29 3 1 8 1 2019 201 19 1
     6 1 27 1 2 8 1 2015 201  9 1
     6 1 45 6 2 8 1 2018 201 11 1
     9 1 40 3 1 5 1 2020 201  2 1
     8 1 25 3 2 8 1 2015 201  4 1
    10 1 41 3 2 5 1 2018 201  9 1
    10 1 29 3 1 6 0 2014 201  9 1
    10 1 28 3 1 6 0 2015 201  8 1
     7 1 40 5 2 8 1 2016 201  2 1
    end
    label values migrant_groupw1 vwi_all
    label def vwi_all 0 "Native", modify
    label values education w_all
    label def w_all 2 "Elementary education", modify
    label def w_all 3 "Middle school education", modify
    label def w_all 4 "Diploma 2-3 years", modify
    label def w_all 5 "Diploma 4-5 years", modify
    label def w_all 6 "Degree", modify
    label values sex x_all
    label def x_all 1 "Male", modify
    label def x_all 2 "Female", modify
    label values Countryoforign t_all
    label def t_all 0 "Italia", modify
    label values region_name l_all
    label def l_all 1 "Piemonte", modify
    label def l_all 2 "Valle d'Aosta", modify
    label def l_all 3 "Lombardia", modify
    label def l_all 4 "Trentino Alto Adige", modify
    label def l_all 5 "Veneto", modify
    label def l_all 6 "Friuli Venezia Giulia", modify
    label def l_all 7 "Liguria", modify
    label def l_all 8 "Emilia Romagna", modify
    label def l_all 9 "Toscana", modify
    label def l_all 10 "Umbria", modify
    label def l_all 11 "Marche", modify
    label def l_all 12 "Lazio", modify
    label def l_all 13 "Abruzzo", modify
    label def l_all 15 "Campania", modify
    label def l_all 16 "Puglia", modify
    label def l_all 17 "Basilicata", modify
    label def l_all 18 "Calabria", modify
    label def l_all 19 "Sicilia", modify
    label def l_all 20 "Sardegna", modify
    However when i try to obtain the estimated probability for the first regression this is the result
    Code:
    . margins, dydx( migrant_groupw1)
    
    Average marginal effects                        Number of obs     =    224,567
    Model VCE    : Robust
    
    dy/dx w.r.t. : 1.migrant_groupw1 2.migrant_groupw1
    1._predict   : Pr(satisfaction_overall==0), predict(pr outcome(0))
    2._predict   : Pr(satisfaction_overall==1), predict(pr outcome(1))
    3._predict   : Pr(satisfaction_overall==2), predict(pr outcome(2))
    4._predict   : Pr(satisfaction_overall==3), predict(pr outcome(3))
    5._predict   : Pr(satisfaction_overall==4), predict(pr outcome(4))
    6._predict   : Pr(satisfaction_overall==5), predict(pr outcome(5))
    7._predict   : Pr(satisfaction_overall==6), predict(pr outcome(6))
    8._predict   : Pr(satisfaction_overall==7), predict(pr outcome(7))
    9._predict   : Pr(satisfaction_overall==8), predict(pr outcome(8))
    10._predict  : Pr(satisfaction_overall==9), predict(pr outcome(9))
    11._predict  : Pr(satisfaction_overall==10), predict(pr outcome(10))
    
    ------------------------------------------------------------------------------------
                       |            Delta-method
                       |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------------+----------------------------------------------------------------
    0.migrant_groupw1  |  (base outcome)
    -------------------+----------------------------------------------------------------
    1.migrant_groupw1  |
              _predict |
                    1  |          .  (not estimable)
                    2  |          .  (not estimable)
                    3  |          .  (not estimable)
                    4  |          .  (not estimable)
                    5  |          .  (not estimable)
                    6  |          .  (not estimable)
                    7  |          .  (not estimable)
                    8  |          .  (not estimable)
                    9  |          .  (not estimable)
                   10  |          .  (not estimable)
                   11  |          .  (not estimable)
    -------------------+----------------------------------------------------------------
    2.migrant_groupw1  |
              _predict |
                    1  |          .  (not estimable)
                    2  |          .  (not estimable)
                    3  |          .  (not estimable)
                    4  |          .  (not estimable)
                    5  |          .  (not estimable)
                    6  |          .  (not estimable)
                    7  |          .  (not estimable)
                    8  |          .  (not estimable)
                    9  |          .  (not estimable)
                   10  |          .  (not estimable)
                   11  |          .  (not estimable)
    ------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    I was wonderng if coefficient obtained in odds are valid and if I can use them insead
    And I was wondering if there is a solution to this problem
    Thanks for your attention

Working...
X