Hello,
I'm currently writing my thesis about board composition and ESG-Performance of german firms.
I have data of 121 firms from 2016-2020. Until now i made two regressions, but i don't know which of them is the most valid.
I have a question regarding the solution of the time effect problem.
The literature says that you can either take two-way clustered standard errors, or introduce a year-dummy in a One-Way clustered-error to counteract this.
But when I run both Regressions, i get very different results. Could you tell me, where my mistake is and which one of them is more valid? Thanks in Advance!
Fixed-Effects Model with clustered errors:
xtreg ESG_Score MB SB WomenMB WomenSB Employee_SB Independant_BM VG logTotalDebt CSR_Committee logTotalRevenue RoAt0 RoAt1 RoAt2 i.Year, fe vce(cluster Comp_id)
results:
Two-Way Clustered Model:
reghdfe ESG_Score MB SB WomenMB WomenSB Employee_SB Independant_BM VG logTotalDebt CSR_Committee logTotalRevenue RoAt0 RoAt1 RoAt2 i.Year, absorb(temp) cluster(Comp_id Year)
results:
I'm currently writing my thesis about board composition and ESG-Performance of german firms.
I have data of 121 firms from 2016-2020. Until now i made two regressions, but i don't know which of them is the most valid.
I have a question regarding the solution of the time effect problem.
The literature says that you can either take two-way clustered standard errors, or introduce a year-dummy in a One-Way clustered-error to counteract this.
But when I run both Regressions, i get very different results. Could you tell me, where my mistake is and which one of them is more valid? Thanks in Advance!
Fixed-Effects Model with clustered errors:
xtreg ESG_Score MB SB WomenMB WomenSB Employee_SB Independant_BM VG logTotalDebt CSR_Committee logTotalRevenue RoAt0 RoAt1 RoAt2 i.Year, fe vce(cluster Comp_id)
results:
ESG_Score | Coef. | St.Err. | t-value | p-value | [95% Conf | Interval] | Sig | ||||
Anzahl_Vorstand | .121 | .423 | 0.29 | .776 | -.716 | .958 | |||||
Anzahl_AR | -.093 | .424 | -0.22 | .826 | -.933 | .747 | |||||
Frauenquote_Vorstand | -7.12 | 3.171 | -2.25 | .027 | -13.4 | -.841 | ** | ||||
Frauenquote_AR | 2.711 | 5.293 | 0.51 | .609 | -7.768 | 13.19 | |||||
Arbeitnehmerquote | 15.113 | 9.316 | 1.62 | .107 | -3.332 | 33.558 | |||||
Independant_BM | 10.858 | 4.3 | 2.53 | .013 | 2.344 | 19.371 | ** | ||||
VG | -.734 | .437 | -1.68 | .096 | -1.6 | .132 | * | ||||
logTotalDebt | .281 | .27 | 1.04 | .3 | -.253 | .815 | |||||
CSR_Committee | 4.545 | 1.75 | 2.60 | .011 | 1.08 | 8.011 | ** | ||||
logTotalRevenue | 9.035 | 3.996 | 2.26 | .026 | 1.122 | 16.947 | ** | ||||
RoAt0 | -48.152 | 9.313 | -5.17 | 0 | -66.59 | -29.714 | *** | ||||
RoAt1 | -7.406 | 8.917 | -0.83 | .408 | -25.061 | 10.249 | |||||
RoAt2 | .423 | 5.879 | 0.07 | .943 | -11.217 | 12.063 | |||||
2016b | 0 | . | . | . | . | . | |||||
2017 | 1.804 | .792 | 2.28 | .025 | .235 | 3.373 | ** | ||||
2018 | 4.174 | 1.041 | 4.01 | 0 | 2.114 | 6.235 | *** | ||||
2019 | 6.653 | 1.263 | 5.27 | 0 | 4.153 | 9.153 | *** | ||||
2020 | 10.72 | 1.535 | 6.98 | 0 | 7.68 | 13.759 | *** | ||||
Constant | -46.95 | 37.265 | -1.26 | .21 | -120.732 | 26.833 | |||||
Mean dependent var | 60.698 | SD dependent var | 19.464 | ||||||||
R-squared | 0.516 | Number of obs | 485 | ||||||||
F-test | . | Prob > F | . | ||||||||
Akaike crit. (AIC) | 2845.765 | Bayesian crit. (BIC) | 2912.711 | ||||||||
*** p<.01, ** p<.05, * p<.1 | |||||||||||
Two-Way Clustered Model:
reghdfe ESG_Score MB SB WomenMB WomenSB Employee_SB Independant_BM VG logTotalDebt CSR_Committee logTotalRevenue RoAt0 RoAt1 RoAt2 i.Year, absorb(temp) cluster(Comp_id Year)
results:
Robust | ||||||||||
ESG_Score | Coefficient | std. err | t | P>t | [95% | conf.interval] | ||||
Anzahl_Vorstand | 0.477 | 0.712 | 0.670 | 0.539 | -1.499 | 2.454 | ||||
Anzahl_AR | 0.091 | 0.479 | 0.190 | 0.858 | -1.239 | 1.422 | ||||
Frauenquote_Vorstand | 0.231 | 6.036 | 0.040 | 0.971 | -16.529 | 16.990 | ||||
Frauenquote_AR | 30.134 | 9.720 | 3.100 | 0.036 | 3.148 | 57.121 | ||||
Arbeitnehmerquote | 3.491 | 8.731 | 0.400 | 0.710 | -20.752 | 27.733 | ||||
Independant_BM | 13.207 | 3.333 | 3.960 | 0.017 | 3.952 | 22.462 | ||||
VG | -0.557 | 0.846 | -0.660 | 0.546 | -2.906 | 1.792 | ||||
logTotalDebt | -0.091 | 0.990 | -0.090 | 0.931 | -2.838 | 2.657 | ||||
CSR_Committee | 12.691 | 2.589 | 4.900 | 0.008 | 5.501 | 19.880 | ||||
logTotalRevenue | 9.682 | 3.193 | 3.030 | 0.039 | 0.818 | 18.547 | ||||
RoAt0 | -3.572 | 13.226 | -0.270 | 0.800 | -40.294 | 33.151 | ||||
RoAt1 | -10.629 | 11.630 | -0.910 | 0.412 | -42.918 | 21.661 | ||||
RoAt2 | -3.376 | 6.363 | -0.530 | 0.624 | -21.042 | 14.291 | ||||
Jahr | ||||||||||
2017 | -0.865 | 0.448 | -1.930 | 0.126 | -2.110 | 0.379 | ||||
2018 | -1.146 | 0.442 | -2.590 | 0.060 | -2.372 | 0.080 | ||||
2019 | 0.591 | 0.671 | 0.880 | 0.428 | -1.272 | 2.454 | ||||
2020 | 2.597 | 0.905 | 2.870 | 0.046 | 0.084 | 5.110 | ||||
_cons | -61.650 | 23.250 | -2.650 | 0.057 | -126.203 | 2.903 | ||||
Comment