Hello everyone.
Hello everyone. I got the following result for random effects model in stata. The p -value for f statistic does not look great. However Hausman test suggests for a RE model. what should i do.
xtreg ROA fitted_values fitted_values^2, vce(cluster panelid)
. use "https://www.stata-press.com/data/r17/nlswork.dta" (National Longitudinal Survey of Young Women, 14-24 years old in 1968) . xtreg ln_wage c.age##c.age, vce(cluster idcode) Random-effects GLS regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-squared: Obs per group: Within = 0.1087 min = 1 Between = 0.1015 avg = 6.1 Overall = 0.0870 max = 15 Wald chi2(2) = 1258.33 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. err. adjusted for 4,710 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- age | .0590339 .0041049 14.38 0.000 .0509884 .0670795 | c.age#c.age | -.0006758 .0000688 -9.83 0.000 -.0008107 -.000541 | _cons | .5479714 .0587198 9.33 0.000 .4328826 .6630601 -------------+---------------------------------------------------------------- sigma_u | .3654049 sigma_e | .30245467 rho | .59342665 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . predict fitted, xb (24 missing values generated) . g sq_fitted=fitted^2 (24 missing values generated) . xtreg ln_wage fitted sq_fitted , vce(cluster idcode) Random-effects GLS regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-squared: Obs per group: Within = 0.1088 min = 1 Between = 0.1045 avg = 6.1 Overall = 0.0887 max = 15 Wald chi2(2) = 1316.74 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. err. adjusted for 4,710 clusters in idcode) ------------------------------------------------------------------------------ | Robust ln_wage | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- fitted | 2.805959 .6246598 4.49 0.000 1.581648 4.030269 sq_fitted | -.5516341 .1920793 -2.87 0.004 -.9281026 -.1751656 _cons | -1.468083 .5055433 -2.90 0.004 -2.45893 -.4772365 -------------+---------------------------------------------------------------- sigma_u | .36481589 sigma_e | .30242516 rho | .59269507 (fraction of variance due to u_i) ------------------------------------------------------------------------------ .
Comment