Hello everyone,
I have a question regarding the real interest rate which I want to include in my regression this is the data regarding the real interest rate:
Since I have a panel data of counties from 2000-2020, i was wondering what the best way is to include it in my regression? Because I thought it would make the regression problematic due to the negative rates that occurs in some years? I have included the real interest rate for each city for each year thats corresponding with the real interest rate in that year. The real interest rate is a national interest rate.
This is the regression result:
In a paper I have used to do something similar as what they did in their study their coefficient for real interest rate is -0.03
I have a question regarding the real interest rate which I want to include in my regression this is the data regarding the real interest rate:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float real_interest 3.005 .8583333 1.59 1.995 2.795 1.6741667 2.680833 2.686667 1.7266667 2.486667 1.6916667 .6891667 -.56583333 -.5391667 .455 .09083333 -.0075 -.8775 -1.1233333 -2.67 -1.6766667 3.005 .8583333 1.59 1.995 2.795 1.6741667 2.680833 2.686667 1.7266667 2.486667 1.6916667 .6891667 -.56583333 -.5391667 .455 .09083333 -.0075 -.8775 -1.1233333 -2.67 -1.6766667 3.005 .8583333 1.59 1.995 2.795 1.6741667 2.680833 2.686667 1.7266667 2.486667 1.6916667 .6891667 -.56583333 -.5391667 .455 .09083333 -.0075 -.8775 -1.1233333 -2.67 -1.6766667 3.005 .8583333 1.59 1.995 2.795 1.6741667 2.680833 2.686667 1.7266667 2.486667 1.6916667 .6891667 -.56583333 -.5391667 .455 .09083333 -.0075 -.8775 -1.1233333 -2.67 -1.6766667 3.005 .8583333 1.59 1.995 2.795 1.6741667 2.680833 2.686667 1.7266667 2.486667 1.6916667 .6891667 -.56583333 -.5391667 .455 .09083333 end
This is the regression result:
Code:
. xtreg log_realHP CPI_percentage Unemployment_rate real_interest logReal_income logenv i.low_dev i.Year,fe cluster(GM_code > ) note: 2018.Year omitted because of collinearity note: 2019.Year omitted because of collinearity Fixed-effects (within) regression Number of obs = 2,532 Group variable: GM_code Number of groups = 282 R-sq: Obs per group: within = 0.8890 min = 8 between = 0.0001 avg = 9.0 overall = 0.0520 max = 9 F(12,281) = 1004.22 corr(u_i, Xb) = -0.2382 Prob > F = 0.0000 (Std. Err. adjusted for 282 clusters in GM_code) ----------------------------------------------------------------------------------- | Robust log_realHP | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- CPI_percentage | .1478894 .0028882 51.21 0.000 .1422042 .1535746 Unemployment_rate | .0319034 .0084486 3.78 0.000 .0152729 .048534 real_interest | .0555505 .0021625 25.69 0.000 .0512938 .0598073 logReal_income | .2497551 .1047908 2.38 0.018 .0434805 .4560297 logenv | .0001096 .0000378 2.90 0.004 .0000351 .0001841 1.low_dev | .010826 .0026449 4.09 0.000 .0056197 .0160324 | Year | 2012 | -.0178078 .0061264 -2.91 0.004 -.0298673 -.0057483 2013 | -.0895682 .0101582 -8.82 0.000 -.109564 -.0695724 2014 | -.0106152 .0067906 -1.56 0.119 -.0239821 .0027516 2015 | .0325508 .007373 4.41 0.000 .0180374 .0470641 2016 | .0814227 .0050252 16.20 0.000 .0715308 .0913146 2017 | -.0059734 .0028849 -2.07 0.039 -.0116522 -.0002947 2018 | 0 (omitted) 2019 | 0 (omitted) | _cons | 9.073849 1.075941 8.43 0.000 6.955921 11.19178 ------------------+---------------------------------------------------------------- sigma_u | .24154703 sigma_e | .02904954 rho | .98574266 (fraction of variance due to u_i) -----------------------------------------------------------------------------------
Comment