Hello everyone i have a panel data set of cities from 2000-2020, I was wondering since interest is the same each year for the whole country should I use VLOOKUP to have the value of interest for each municipality per year? Or should I just make 2 tables with the years and interest values without attaching the value for each municipality per year? I have the same question regarding construction costs.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double Interest str29 GM_naam long Constructioncosts double CPI_index 5.405 "'s-Gravenhage" . 100 4.95833333 "'s-Gravenhage" . 102.4 4.89 "'s-Gravenhage" . 106.5984 4.095 "'s-Gravenhage" . 110.11614719999999 4.095 "'s-Gravenhage" . 112.42858629119998 3.37416667 "'s-Gravenhage" . 113.89015791298557 3.78083333 "'s-Gravenhage" . 115.82629059750631 4.28666667 "'s-Gravenhage" . 117.10037979407888 4.22666667 "'s-Gravenhage" . 118.97398587078413 3.68666667 "'s-Gravenhage" . 121.94833551755373 2.99166667 "'s-Gravenhage" . 123.41171554376437 2.98916667 "'s-Gravenhage" . 125.01606784583329 1.93416667 "'s-Gravenhage" 120000 127.89143740628745 1.96083333 "'s-Gravenhage" 116000 131.08872334144462 1.455 "'s-Gravenhage" 107500 134.36594142498072 .69083333 "'s-Gravenhage" 106500 135.70960083923052 .2925 "'s-Gravenhage" 113500 136.5238584442659 .5225 "'s-Gravenhage" 118000 136.9334300195987 .57666667 "'s-Gravenhage" 132000 138.85049803987306 -.07 "'s-Gravenhage" 140500 141.2109565065509 -.3766667 "'s-Gravenhage" 148000 144.8824413757212 5.405 "'s-Hertogenbosch" . 100 4.95833333 "'s-Hertogenbosch" . 102.4 4.89 "'s-Hertogenbosch" . 106.5984 4.095 "'s-Hertogenbosch" . 110.11614719999999 4.095 "'s-Hertogenbosch" . 112.42858629119998 3.37416667 "'s-Hertogenbosch" . 113.89015791298557 3.78083333 "'s-Hertogenbosch" . 115.82629059750631 4.28666667 "'s-Hertogenbosch" . 117.10037979407888 4.22666667 "'s-Hertogenbosch" . 118.97398587078413 3.68666667 "'s-Hertogenbosch" . 121.94833551755373 2.99166667 "'s-Hertogenbosch" . 123.41171554376437 2.98916667 "'s-Hertogenbosch" . 125.01606784583329 1.93416667 "'s-Hertogenbosch" 120000 127.89143740628745 1.96083333 "'s-Hertogenbosch" 116000 131.08872334144462 1.455 "'s-Hertogenbosch" 107500 134.36594142498072 .69083333 "'s-Hertogenbosch" 106500 135.70960083923052 .2925 "'s-Hertogenbosch" 113500 136.5238584442659 .5225 "'s-Hertogenbosch" 118000 136.9334300195987 .57666667 "'s-Hertogenbosch" 132000 138.85049803987306 -.07 "'s-Hertogenbosch" 140500 141.2109565065509 -.3766667 "'s-Hertogenbosch" 148000 144.8824413757212 5.405 "Aa en Hunze" . 100 4.95833333 "Aa en Hunze" . 102.4 4.89 "Aa en Hunze" . 106.5984 4.095 "Aa en Hunze" . 110.11614719999999 4.095 "Aa en Hunze" . 112.42858629119998 3.37416667 "Aa en Hunze" . 113.89015791298557 3.78083333 "Aa en Hunze" . 115.82629059750631 4.28666667 "Aa en Hunze" . 117.10037979407888 4.22666667 "Aa en Hunze" . 118.97398587078413 3.68666667 "Aa en Hunze" . 121.94833551755373 2.99166667 "Aa en Hunze" . 123.41171554376437 2.98916667 "Aa en Hunze" . 125.01606784583329 1.93416667 "Aa en Hunze" 120000 127.89143740628745 1.96083333 "Aa en Hunze" 116000 131.08872334144462 1.455 "Aa en Hunze" 107500 134.36594142498072 .69083333 "Aa en Hunze" 106500 135.70960083923052 .2925 "Aa en Hunze" 113500 136.5238584442659 .5225 "Aa en Hunze" 118000 136.9334300195987 .57666667 "Aa en Hunze" 132000 138.85049803987306 -.07 "Aa en Hunze" 140500 141.2109565065509 -.3766667 "Aa en Hunze" 148000 144.8824413757212 5.405 "Aalsmeer" . 100 4.95833333 "Aalsmeer" . 102.4 4.89 "Aalsmeer" . 106.5984 4.095 "Aalsmeer" . 110.11614719999999 4.095 "Aalsmeer" . 112.42858629119998 3.37416667 "Aalsmeer" . 113.89015791298557 3.78083333 "Aalsmeer" . 115.82629059750631 4.28666667 "Aalsmeer" . 117.10037979407888 4.22666667 "Aalsmeer" . 118.97398587078413 3.68666667 "Aalsmeer" . 121.94833551755373 2.99166667 "Aalsmeer" . 123.41171554376437 2.98916667 "Aalsmeer" . 125.01606784583329 1.93416667 "Aalsmeer" 120000 127.89143740628745 1.96083333 "Aalsmeer" 116000 131.08872334144462 1.455 "Aalsmeer" 107500 134.36594142498072 .69083333 "Aalsmeer" 106500 135.70960083923052 .2925 "Aalsmeer" 113500 136.5238584442659 .5225 "Aalsmeer" 118000 136.9334300195987 .57666667 "Aalsmeer" 132000 138.85049803987306 -.07 "Aalsmeer" 140500 141.2109565065509 -.3766667 "Aalsmeer" 148000 144.8824413757212 5.405 "Aalten" . 100 4.95833333 "Aalten" . 102.4 4.89 "Aalten" . 106.5984 4.095 "Aalten" . 110.11614719999999 4.095 "Aalten" . 112.42858629119998 3.37416667 "Aalten" . 113.89015791298557 3.78083333 "Aalten" . 115.82629059750631 4.28666667 "Aalten" . 117.10037979407888 4.22666667 "Aalten" . 118.97398587078413 3.68666667 "Aalten" . 121.94833551755373 2.99166667 "Aalten" . 123.41171554376437 2.98916667 "Aalten" . 125.01606784583329 1.93416667 "Aalten" 120000 127.89143740628745 1.96083333 "Aalten" 116000 131.08872334144462 1.455 "Aalten" 107500 134.36594142498072 .69083333 "Aalten" 106500 135.70960083923052 end
Comment