Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Twoway scatter - survey weighted graph

    Hello,

    I would like to know how can I draw a picture (using a survey and [aweight = i_indscui_lw] ) I can observe the level of concentration of people (ch_scghqa) if they spend time on childare or home schoolling (cg_timechcare). Namely, I would like to know the command for three cases:
    1 - Level of concentration of people that spend time on childcare or homeworking. Only the sample of individual that live with people aged 0-4 (cg_hhcompa)
    2 -Level of concentration of people that spend time on childcare or homeworking. Only the sample of individual that live with people aged 5-15 (cg_hhcompb)
    3 - Both 1 and 2 in the same picture.

    I send an example of the dataset below.
    Thank you very much in advance

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input long(pidp pid i_psu) int i_strata byte(i_childpno i_sex cg_scghqa cg_hhcompa cg_hhcompb)
     683337457 113050585   234   71 -8 2  2 0 0
    1293998535        -8 40436 3989 -8 1  4 0 1
     749776179        -8 25389 3692 -8 2  3 0 0
     272167291        -8  2327 2164 -8 1 -8 0 0
    1031845850        -8 52130 5123 -8 1  3 0 0
     682492227        -8  6441 3321 -8 1  1 0 0
     682428973 123427789    82   17 -8 1  2 0 1
     612092499        -8  2186 2093 -8 1  2 0 1
     701148013 118047434   557  147 -8 2  2 0 0
    1292417539        -8  2832 2416 -8 2  2 0 0
     546315417 112553435    94   21 -8 2  3 0 0
    1225137655        -8  4185 3093 -8 2  2 0 0
    1293309015        -8  4600 3300 -8 2  2 0 0
    1443368130        -8 52140 5123 -8 1  2 0 1
    1089077815        -8  4169 3085 -8 2  3 0 0
    1565173695        -8  4299 3150 -8 2  2 0 1
    1293054011        -8  4080 3040 -8 2  1 1 0
    1428017015        -8  2032 2016 -8 2  4 0 0
    1565561979        -8 46696 4119 -8 2  2 0 0
     274023701 113393075     6    2 -8 2  3 0 0
     632753613 117671118   532  140 -8 2  2 0 0
    1496920063        -8  3811 2906 -8 2  2 0 1
    1293130179        -8  4248 3124 -8 1  1 0 0
    1156289695        -8  2545 2273 -8 1  2 0 0
    1021652415        -8 32364 3833 -8 2  2 1 0
     748175463        -8  2341 2171 -8 2  3 0 0
     818669693 124195539   147   39 -8 2  2 0 0
    1497033611        -8  4075 3038 -8 2  2 0 0
    1158289575        -8 36998 3922 -8 1  2 0 0
    1578286930        -8 52219 5124 -8 1  2 0 0
      89129665 107106965   545  143 -8 2  2 0 0
     885066255        -8  4150 3075 -8 1  2 0 0
    1496734419        -8  3427 2714 -8 1  4 0 0
     820043297 111214416   189   54 -8 2  2 0 0
     884242099        -8  2494 2247 -8 2  3 0 0
    1224120379        -8  2217 2109 -8 2  2 0 0
     816301935        -8  2597 2299 -8 2  2 0 1
    1428843899        -8  3640 2820 -7 2  4 1 1
     612794935        -8  3554 2777 -8 2  2 0 0
    1156923455        -8  3793 2897 -8 2  3 0 0
     409305619        -8  4567 3284 -8 2  3 0 0
     818423537 112571875    87   19 -8 2  3 0 1
    1429168935        -8  4240 3120 -8 2  3 0 0
     953001659        -8  3942 2971 -8 2  4 0 0
     682408579        -8 24731 3681 -8 1  2 0 1
    1632393055        -8  2747 2374 -8 2  3 0 2
    1089013903        -8  4049 3025 -8 2  3 0 1
    1564188375        -8  2379 2190 -8 2  3 0 0
    1632393059        -8  2747 2374 -8 2  1 0 2
    1361071019        -8  4128 3064 -8 1  3 0 0
     408257737 110343158    60   14 -8 2  2 0 0
    1157109775        -8  4153 3077 -8 1  1 0 0
     273068975        -8  4103 3052 -8 2  2 0 0
     436097621 119205149  1688  701 -8 1  2 0 3
    1088206059        -8  2393 2197 -8 2  2 0 0
    1088997575        -8  4041 3021 -8 2 -8 0 0
    1022699623        -8 33956 3861 -8 2  2 0 0
     204301931        -8  2596 2298 -8 2  2 0 1
    1033260130        -8 52075 5122 -8 1  2 0 0
     816538575        -8  3053 2527 -8 1  2 0 1
    1020498459        -8  2966 2483 -8 2  3 0 0
     952265211        -8  2526 2263 -8 2  2 1 0
     682598979        -8  6598 3321 -8 2  3 0 0
     408102027        -8  2215 2108 -8 2  4 0 0
     204396455        -8  2788 2394 -8 2  2 0 0
     205146495        -8  4252 3126 -8 2  3 0 0
     612576655        -8  3146 2573 -8 1  2 0 0
     272478059        -8  2951 2476 -8 2  3 0 0
     476582095        -8  3138 2569 -8 2  2 0 0
     749782977  93371306   178   50 -8 2  2 0 0
     885302215        -8  4606 3303 -8 1  2 0 1
     748667779        -8  3277 2639 -8 1  2 0 0
     204571895        -8  3124 2562 -8 2  2 0 0
    1498097815        -8 45746 4099 -8 2 -8 0 0
     952273375        -8  2550 2275 -8 2  2 0 0
     816952699        -8  3869 2935 -8 2  2 0 0
     817278419        -8  4517 3259 -8 1  3 0 0
     544668455        -8  3298 2649 -8 2  2 0 0
    1564084335        -8  2163 2082 -8 2  2 0 0
     885069655        -8  4150 3075 -8 1  2 0 0
     544735783        -8  3442 2721 -8 2  2 0 0
      68197903        -8  2396 2198 -8 1  2 0 0
    1428017691        -8  2032 2016 -8 1  2 0 0
     478322891        -8 18815 3564 -8 2  4 0 0
     768997053  96847891   513  134 -8 2  3 0 0
      70718649  93620659   246   74 -8 1  3 0 1
     612367215        -8  2714 2357 -8 2  3 0 0
     272023815        -8  2039 2020 -8 2  2 0 0
     272807175        -8  3575 2788 -8 1  3 1 0
    1433331334        -8 43413 4051 -8 2  3 0 0
    1020317575        -8  2606 2303 -8 1  3 0 0
    1225441615        -8 37658 3935 -8 2  2 0 2
     892017404        -8 29728 3779 -8 2  3 0 0
     776221373 119314428  1827  701 -8 2  2 0 0
     544280171        -8  2530 2265 -8 1  2 0 0
     884805815        -8  3574 2787 -8 2  3 0 0
     409305615        -8  4567 3284 -8 2 -8 0 0
     340329135        -8  2631 2316 -8 2  3 0 0
      68559659        -8  3092 2546 -8 2  2 0 0
     544785419        -8  3538 2769 -8 1  2 0 0
    end
    label values pid pid
    label def pid -8 "inapplicable", modify
    label values i_psu i_psu
    label values i_strata i_strata
    label values i_childpno i_childpno
    label def i_childpno -8 "inapplicable", modify
    label def i_childpno -7 "proxy", modify
    label values i_sex i_sex
    label def i_sex 1 "male", modify
    label def i_sex 2 "female", modify
    label values cg_scghqa cg_scghqa
    label def cg_scghqa -8 "inapplicable", modify
    label def cg_scghqa 1 "Better than usual", modify
    label def cg_scghqa 2 "Same as usual", modify
    label def cg_scghqa 3 "Less than usual", modify
    label def cg_scghqa 4 "Much less than usual", modify
    label values cg_hhcompa cg_hhcompa
    label values cg_hhcompb cg_hhcompb
    label def cg_hhcompb 3 "3+", modify

  • #2
    The variables i_indscui_lw, ch_scghqa, and cg_timechcare seem to be missing from your example data
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment

    Working...
    X