Dear friends, I need help with a problem that I counter, I try to choose which method is suitable for my analysis whether fe, re or OLS. But due to my lack of understanding in interpreting data I keep circling which method should I use
herewith what I've done so far
much appreciate any clue that anyone could pointed out
. egen Object=group(Country)
. xtset Object Year,yearly
panel variable: Object (strongly balanced)
time variable: Year, 1990 to 2019
delta: 1 year
. xtreg MfgGrowth CP mfglaborgrowth, fe
Fixed-effects (within) regression Number of obs = 60
Group variable: Object Number of groups = 2
R-sq: Obs per group:
within = 0.2131 min = 30
between = 1.0000 avg = 30.0
overall = 0.3531 max = 30
F(2,56) = 7.58
corr(u_i, Xb) = 0.5641 Prob > F = 0.0012
--------------------------------------------------------------------------------
MfgGrowth | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
CP | .0675011 .0286445 2.36 0.022 .0101193 .1248828
mfglaborgrowth | .9766219 .2798877 3.49 0.001 .4159394 1.537304
_cons | .02143 .0276787 0.77 0.442 -.0340171 .0768771
---------------+----------------------------------------------------------------
sigma_u | .02553164
sigma_e | .08792706
rho | .07775999 (fraction of variance due to u_i)
--------------------------------------------------------------------------------
F test that all u_i=0: F(1, 56) = 1.27 Prob > F = 0.2641
. estimate store fe
. xtreg MfgGrowth CP mfglaborgrowth, re
Random-effects GLS regression Number of obs = 60
Group variable: Object Number of groups = 2
R-sq: Obs per group:
within = 0.2095 min = 30
between = 1.0000 avg = 30.0
overall = 0.3581 max = 30
Wald chi2(2) = 31.80
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
MfgGrowth | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
CP | .0901471 .0204808 4.40 0.000 .0500055 .1302887
mfglaborgrowth | 1.041938 .2744863 3.80 0.000 .5039551 1.579922
_cons | .0014943 .0213528 0.07 0.944 -.0403564 .043345
---------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .08792706
rho | 0 (fraction of variance due to u_i)
--------------------------------------------------------------------------------
. estimate store re
. hausman fe re
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| fe re Difference S.E.
-------------+----------------------------------------------------------------
CP | .0675011 .0901471 -.022646 .0200261
mfglaborgr~h | .9766219 1.041938 -.0653165 .054721
------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 1.28
Prob>chi2 = 0.5277
(V_b-V_B is not positive definite)
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects
MfgGrowth[Object,t] = Xb + u[Object] + e[Object,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
MfgGrowth | .0116923 .108131
e | .0077312 .0879271
u | 0 0
Test: Var(u) = 0
chibar2(01) = 0.00
Prob > chibar2 = 1.0000
herewith what I've done so far
much appreciate any clue that anyone could pointed out
. egen Object=group(Country)
. xtset Object Year,yearly
panel variable: Object (strongly balanced)
time variable: Year, 1990 to 2019
delta: 1 year
. xtreg MfgGrowth CP mfglaborgrowth, fe
Fixed-effects (within) regression Number of obs = 60
Group variable: Object Number of groups = 2
R-sq: Obs per group:
within = 0.2131 min = 30
between = 1.0000 avg = 30.0
overall = 0.3531 max = 30
F(2,56) = 7.58
corr(u_i, Xb) = 0.5641 Prob > F = 0.0012
--------------------------------------------------------------------------------
MfgGrowth | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
CP | .0675011 .0286445 2.36 0.022 .0101193 .1248828
mfglaborgrowth | .9766219 .2798877 3.49 0.001 .4159394 1.537304
_cons | .02143 .0276787 0.77 0.442 -.0340171 .0768771
---------------+----------------------------------------------------------------
sigma_u | .02553164
sigma_e | .08792706
rho | .07775999 (fraction of variance due to u_i)
--------------------------------------------------------------------------------
F test that all u_i=0: F(1, 56) = 1.27 Prob > F = 0.2641
. estimate store fe
. xtreg MfgGrowth CP mfglaborgrowth, re
Random-effects GLS regression Number of obs = 60
Group variable: Object Number of groups = 2
R-sq: Obs per group:
within = 0.2095 min = 30
between = 1.0000 avg = 30.0
overall = 0.3581 max = 30
Wald chi2(2) = 31.80
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
MfgGrowth | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
CP | .0901471 .0204808 4.40 0.000 .0500055 .1302887
mfglaborgrowth | 1.041938 .2744863 3.80 0.000 .5039551 1.579922
_cons | .0014943 .0213528 0.07 0.944 -.0403564 .043345
---------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .08792706
rho | 0 (fraction of variance due to u_i)
--------------------------------------------------------------------------------
. estimate store re
. hausman fe re
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| fe re Difference S.E.
-------------+----------------------------------------------------------------
CP | .0675011 .0901471 -.022646 .0200261
mfglaborgr~h | .9766219 1.041938 -.0653165 .054721
------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 1.28
Prob>chi2 = 0.5277
(V_b-V_B is not positive definite)
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects
MfgGrowth[Object,t] = Xb + u[Object] + e[Object,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
MfgGrowth | .0116923 .108131
e | .0077312 .0879271
u | 0 0
Test: Var(u) = 0
chibar2(01) = 0.00
Prob > chibar2 = 1.0000
Comment