Hi statalist,
I am using little’s test to check if my data is MCAR, which it is not. The variable with missing data is income and approx. 29% of data is missing. My total sample size is 1,800 individuals.
I am not sure how to proceed. I need to run a fixed effects regression and include this variable as one of my covariates. Can I still try to impute the missing values?
I am using little’s test to check if my data is MCAR, which it is not. The variable with missing data is income and approx. 29% of data is missing. My total sample size is 1,800 individuals.
Code:
. mcartest income wor1 wor2 wor3 wor4 wor5 wor6 wor7 wor8 wor9 Little's MCAR test Number of obs = 1726 Chi-square distance = 22.0935 Degrees of freedom = 9 Prob > chi-square = 0.0086
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str14 ID float outcome byte(income wor1 wor2) long wor3 byte(wor4 wor5 wor6 wor7 wor8 wor9 wave) "10504000000002" -.3186359 2 2 4 2 1 0 0 0 0 1 1 "10504000000002" -3.1873674 2 1 1 2 0 0 0 0 0 0 2 "10504000000043" -2.4036455 . 1 2 1 0 1 0 0 0 1 1 "10504000000043" 2.613899 . 1 1 2 0 1 0 0 0 0 2 "10504000000113" 1.234423 1 2 3 3 0 1 0 0 0 0 1 "10504000000113" .25891808 1 3 2 2 0 0 0 0 0 0 2 "10504000000231" -2.949189 4 2 2 1 1 0 0 0 0 0 1 "10504000000231" 1.567996 4 1 4 3 0 1 1 0 0 1 2 "10504000000444" .9008501 1 2 4 2 1 0 0 0 0 0 1 "10504000000444" .8814207 1 3 2 2 1 0 0 0 0 0 2 "10504000000482" 2.613899 1 1 4 3 1 0 0 0 0 0 1 "10504000000482" 1.4012096 1 1 2 3 0 0 0 0 1 0 2 "10504000000535" -1.0241696 3 1 1 1 0 0 0 0 0 0 1 "10504000000535" -2.236859 3 1 4 1 0 1 0 0 0 0 2 "10504000000644" 2.4471126 . 1 4 1 0 0 0 0 0 0 1 "10504000000644" 1.9467533 . 1 4 2 1 1 0 0 1 0 2 "10504000000696" -2.92976 . 1 1 2 1 0 0 0 0 0 1 "10504000000696" -3.449549 . 1 1 1 1 0 0 0 0 0 2 "10504000000748" 1.567996 . 4 4 2 0 1 0 0 0 0 1 "10504000000748" -1.370393 . 4 4 2 1 1 0 0 0 0 2 "10504000000821" 1.4012096 1 3 3 2 1 0 0 0 0 0 1 "10504000000821" 1.0676366 1 2 4 1 0 0 0 0 0 0 2 "10504000000978" -2.419119 1 4 2 1 0 0 0 0 0 0 1 "10504000000978" .3553065 1 2 2 3 1 1 0 0 0 0 2 "10504000000991" 1.4012096 2 2 2 3 0 1 0 0 0 0 1 "10504000000991" -1.0390252 2 4 3 1 1 0 0 0 0 0 2 "10504000001036" 2.613899 2 1 4 3 1 1 0 1 0 0 1 "10504000001036" 1.3244863 2 3 1 3 1 0 0 0 0 0 2 "10504000001052" .52209294 . 2 4 2 1 0 0 0 0 0 1 "10504000001052" -3.449549 . 2 2 2 1 0 0 0 0 0 2 "10504000001073" 1.4012096 1 2 3 3 1 0 0 0 0 0 1 "10504000001073" -1.5697132 1 1 3 2 1 0 0 0 0 0 2 "10504000001102" .18347497 1 4 4 3 1 1 0 0 0 0 1 "10504000001102" -2.236859 1 1 4 3 1 0 0 0 0 0 2 "10504000001142" -2.236859 . 1 4 2 1 1 0 0 0 0 1 "10504000001142" 2.613899 . 1 2 3 1 0 0 0 0 0 2 "10504000001236" -2.402652 1 1 4 2 0 0 0 0 1 0 1 "10504000001236" -1.563859 1 1 4 3 0 0 0 0 1 0 2 "10504000001239" 1.9467533 . 1 1 1 0 0 0 0 0 0 1 "10504000001239" -.03875893 . 2 1 1 1 0 0 0 1 0 2 "10504000001244" .18852 1 4 4 2 0 1 0 0 0 0 1 "10504000001244" -.8573831 1 2 4 3 1 1 0 0 1 0 2 "10504000001261" 2.613899 1 4 2 3 0 1 0 0 0 0 1 "10504000001261" 2.613899 1 3 4 3 1 1 0 0 1 0 2 "10504000001304" 1.4012096 1 4 4 3 0 1 0 0 0 0 1 "10504000001304" 1.4012096 1 1 4 3 0 0 0 0 0 0 2 "10504000001470" -3.449549 1 1 1 1 1 0 0 0 0 0 1 "10504000001470" -3.191941 1 1 4 1 0 0 0 0 0 0 2 "10504000001471" -2.4997985 1 3 2 1 1 0 0 0 0 0 1 "10504000001471" -.5364607 1 1 2 1 0 0 0 0 0 0 2 "10504000001499" -.005772657 2 1 4 2 0 1 0 0 0 0 1 "10504000001499" -2.236859 2 4 4 2 1 1 0 0 0 0 2 "10504000001510" -3.282762 . 1 1 1 1 0 0 0 0 0 1 "10504000001510" -3.449549 . 1 1 1 0 0 0 0 0 0 2 "10504000001523" -1.0241696 1 3 3 1 0 0 0 0 0 0 1 "10504000001523" 1.4012096 1 2 1 1 1 0 0 0 0 0 2 "10504000001624" -1.832888 . 1 4 2 0 0 0 0 0 0 1 "10504000001624" -3.449549 . 1 2 3 0 1 0 0 0 0 2 "10504000001632" 1.4012096 . 3 3 1 1 0 0 0 0 0 1 "10504000001632" -2.236859 . 1 2 1 1 0 0 0 0 0 2 "10504000001704" 1.4012096 1 1 3 3 0 1 0 0 0 0 1 "10504000001704" 2.613899 1 1 4 2 0 0 0 0 0 0 2 "10504000001779" -1.5697132 1 4 4 2 1 0 0 0 0 0 1 "10504000001779" -1.7364997 1 2 2 1 1 0 0 0 0 0 2 "10504000001832" 1.567996 2 1 2 3 0 0 0 0 0 1 1 "10504000001832" 2.4471126 2 2 2 2 0 1 0 0 0 0 2 "10504000001834" -.9287747 . 4 4 3 1 0 0 0 0 0 1 "10504000001834" 1.9467533 . 1 1 2 0 1 0 0 0 0 2 "10504000001909" .3553065 . 4 2 1 0 0 0 0 0 0 1 "10504000001909" -2.236859 . 4 2 2 1 0 0 0 0 0 2 "10504000001915" -2.4036455 2 3 2 2 0 0 0 0 1 0 1 "10504000001915" -.3366007 2 1 2 2 0 1 0 0 1 0 2 "10504000001932" -2.615616 2 1 1 1 0 0 0 0 0 0 1 "10504000001932" -3.449549 2 1 2 1 0 0 0 0 0 0 2 "10504000001943" 1.831171 1 1 2 2 1 0 0 0 0 0 1 "10504000001943" 2.3509598 1 1 4 3 0 0 0 0 0 1 2 "10504000001966" -.52381015 2 1 2 2 1 0 0 0 1 0 1 "10504000001966" -2.236859 2 1 2 1 1 0 0 0 0 0 2 "10504000001968" -1.0241696 2 3 3 2 1 0 0 0 0 0 1 "10504000001968" -.5364607 2 1 2 1 1 0 0 0 0 0 2 "10504000002069" .4461275 1 4 4 2 1 0 0 0 0 0 1 "10504000002069" .18243033 1 4 1 2 0 1 0 0 0 0 2 "10504000002139" 1.9318976 . 1 2 2 0 0 0 0 0 0 1 "10504000002139" -3.449549 . 4 1 3 0 0 0 0 0 0 2 "10504000002297" -2.615616 1 1 3 2 1 0 0 0 0 0 1 "10504000002297" -3.449549 1 1 1 2 0 0 0 0 0 0 2 "10504000002304" -1.7364997 1 2 2 2 1 0 0 0 0 1 1 "10504000002304" 1.4012096 1 2 1 3 1 1 0 0 0 0 2 "10504000002326" -3.449549 1 4 4 2 0 0 0 0 0 0 1 "10504000002326" 2.613899 1 4 4 2 0 0 0 0 0 0 2 "10504000002390" -1.190956 . 2 3 2 0 0 0 0 0 0 1 "10504000002390" -1.0387385 . 1 1 1 0 1 0 0 0 0 2 "10504000002476" .7814519 3 2 2 2 1 0 0 0 0 0 1 "10504000002476" -3.449549 3 4 4 2 1 0 0 0 0 0 2 "10504000002694" 2.613899 1 2 3 2 1 0 0 0 0 1 1 "10504000002694" -1.3275787 1 2 4 1 0 0 0 0 0 0 2 "10504000002727" -1.190956 1 1 4 2 1 0 0 0 0 0 1 "10504000002727" -3.282762 1 4 1 1 0 0 0 0 0 0 2 "10504000002766" -1.454131 2 1 1 2 1 0 0 0 0 0 1 "10504000002766" 1.4012096 2 2 2 3 0 0 0 0 0 0 2 end label values income Lma_COR22 label def Lma_COR22 1 "Less than 2500 MAD", modify label def Lma_COR22 2 "2500 - less than 5000 MAD", modify label def Lma_COR22 3 "5000 -less than 10000 MAD", modify label def Lma_COR22 4 "10000 or more", modify label values wor1 COR34 label def COR34 1 "Not at all", modify label def COR34 2 "A little", modify label def COR34 3 "Rather", modify label def COR34 4 "Very", modify label values wor2 COR35 label def COR35 1 "Not at all", modify label def COR35 2 "A little", modify label def COR35 3 "Rather", modify label def COR35 4 "Very", modify label values wor3 foodc label def foodc 1 "High", modify label def foodc 2 "Moderate", modify label def foodc 3 "Low", modify label values wor4 COR27 label def COR27 0 "Not Mentioned", modify label def COR27 1 "Mentioned", modify label values wor5 V104_A label def V104_A 0 "Not Mentioned", modify label def V104_A 1 "Mentioned", modify label values wor6 V105_A label def V105_A 0 "Not Mentioned", modify label def V105_A 1 "Mentioned", modify label values wor7 V106_A label def V106_A 0 "Not Mentioned", modify label def V106_A 1 "Mentioned", modify label values wor8 V107_A label def V107_A 0 "Not Mentioned", modify label def V107_A 1 "Mentioned", modify label values wor9 V108_A label def V108_A 0 "Not Mentioned", modify label def V108_A 1 "Mentioned", modify label values wave wave label def wave 1 "Wave 1", modify label def wave 2 "Wave 2", modify
Comment