Hi all,
I have a dataset that is in long format, whereby each observation describes an individual project, including which country this project was in. This means that if there was more than 1 project in a country, there a multiple observations for that country.
I am interested in how many projects there are, by country. From here, I want to create new variables that describe this.
I understand that I may be explaining this poorly - I hope my example and code makes what I am trying to achieve clearer.
Initially, I can partially achieve what I am after by running:
Which provides a table of what type of projects and total number of projects, by country (recip2)
I have tried to create variables with the data by running the following:
However, when I run this, it doesn't include the country variable (recip2) as an ID variable, like it shows in the initial table using the tab command.
It creates the variables x1, x2, x3, x4, x5 with the correct values for project intention (intent2)
Is there a way I can include the country as a variable?
As for total number of projects, I imagine I can create this afterwards by using an egen rowtotal command loop (after dropping all variables other than the ones created in this process)?
I hope this makes sense. Apologies if it does not and I will try my best to clarify. Below is some example code which I hope may make this more sensical!
Any help is greatly appreciated as always.
I have a dataset that is in long format, whereby each observation describes an individual project, including which country this project was in. This means that if there was more than 1 project in a country, there a multiple observations for that country.
I am interested in how many projects there are, by country. From here, I want to create new variables that describe this.
I understand that I may be explaining this poorly - I hope my example and code makes what I am trying to achieve clearer.
Initially, I can partially achieve what I am after by running:
Code:
tab recip2 intent2
I have tried to create variables with the data by running the following:
Code:
tab recip2 intent2, matcell(x) matrix list x svmat x
It creates the variables x1, x2, x3, x4, x5 with the correct values for project intention (intent2)
Is there a way I can include the country as a variable?
As for total number of projects, I imagine I can create this afterwards by using an egen rowtotal command loop (after dropping all variables other than the ones created in this process)?
I hope this makes sense. Apologies if it does not and I will try my best to clarify. Below is some example code which I hope may make this more sensical!
Any help is greatly appreciated as always.
Code:
clear input long AidDataTUFFProjectID int(CommitmentYear ImplementationStartYear CompletionYear) double AmountConstantUSD2017 long(recip2 status2 sectorname2 flowclass2 flowtype2 intent2) float(x1 x2 x3 x4 x5) 4 2001 2004 2006 13095371.5173268 6 2 14 2 6 2 0 92 10 1 3 6 2001 2001 2001 1309537.15173268 6 2 9 2 5 2 0 33 3 4 1 10 2000 . . . 6 4 13 2 7 2 0 25 1 0 12 13 2001 . . . 6 2 13 2 5 2 0 30 0 3 1 14 2003 2003 2003 1277285.29905012 4 2 9 2 5 2 0 5 0 1 1 16 2009 2009 . . 58 3 2 2 7 2 5 128 0 184 1 18 2000 . 2002 19777599.6089836 16 2 15 3 6 4 0 46 2 0 2 20 2003 . . 42288864.491973 4 2 5 3 3 4 20 4 0 26 4 23 2001 2009 2012 21094817.8285375 19 2 18 2 6 2 0 21 7 0 8 24 2007 . . . 16 2 1 2 1 2 0 28 0 0 3 29 2005 2004 . . 19 2 14 2 4 2 1 9 2 4 4 31 2006 2006 2008 14089831.8656307 19 2 18 2 6 2 0 25 1 3 1 32 2005 . . . 16 2 8 2 7 2 0 61 0 19 9 33 2006 . . 211611.99297568 19 2 8 2 5 2 0 42 5 7 8 34 2006 . . . 16 3 13 2 5 2 1 40 6 29 12 38 2007 2008 2009 2052840.82185981 19 2 8 2 5 2 0 84 4 6 1 39 2009 . . . 19 2 2 2 4 2 1 50 20 8 5 40 2009 2010 2014 1075628194.29734 19 2 10 3 3 4 0 12 3 3 2 42 2009 . . 3646.35293709898 19 2 8 2 5 2 0 67 0 2 4 46 2009 2009 2009 . 19 2 8 3 5 5 27 11 0 61 11 47 2002 2002 2002 1952518.6090752 6 2 13 2 5 2 1 13 0 10 2 48 2002 2002 2002 1310535.30508861 6 2 9 2 5 2 1 17 0 2 15 49 2002 . . 650839.536358402 6 2 9 2 5 2 0 83 3 1 2 51 2002 . . . 6 2 13 2 5 2 0 65 6 2 2 53 2007 2006 2009 23809691.980076 120 2 5 2 6 2 3 171 15 70 17 57 2004 . . . 6 3 5 2 7 2 1 91 4 13 3 59 2005 2005 2005 1884110.49736411 6 2 2 2 5 2 0 84 3 1 0 63 2005 . . 71574726.4818916 6 2 5 4 6 2 0 78 0 3 2 65 2007 . . 40470114.7255072 6 3 24 3 3 4 3 10 0 7 7 66 2007 2005 2008 79169209.7239682 6 2 22 3 3 4 0 22 4 2 5 69 2010 2010 2010 53565534.324448 6 2 18 2 5 2 0 60 2 0 2 74 2005 . 2005 2655799.06156492 81 2 5 2 5 2 0 138 2 7 2 80 2003 . 2003 7496231.49183316 48 2 22 2 5 2 0 19 0 0 2 83 2002 2003 2005 17385561.3573055 99 2 24 2 5 2 1 22 0 4 6 85 2008 2008 2014 92649900.7229842 51 2 10 2 6 2 0 62 4 5 1 87 2003 . 2013 12686659.3475919 46 2 22 2 6 2 1 76 0 18 4 91 2004 2005 2006 15637760.3556125 23 2 5 3 3 4 0 1 0 0 1 96 2004 2004 2007 19769608.5405974 126 2 22 2 5 2 0 109 0 4 2 99 2001 2001 2003 26938082.3670424 46 2 22 2 6 2 0 148 6 55 2 100 2006 2007 2009 22119295.3049387 48 2 22 2 6 2 1 76 2 4 0 105 2006 . 2010 33178942.9574081 19 2 22 2 6 2 0 66 0 3 2 109 2007 2006 2010 28049575.6291158 19 2 22 2 6 2 0 2 0 0 1 115 2001 2001 2004 57193247.4477634 130 2 24 2 5 2 5 66 5 14 1 117 2008 2008 . 30470195.6507751 16 2 22 2 5 2 2 39 2 7 4 119 2003 2003 2005 51091411.9620048 19 2 22 2 6 2 0 1 0 0 0 120 2003 2004 2006 58755123.7563055 54 2 22 2 6 2 1 76 1 21 2 131 2005 2007 2008 57469555.0838921 95 2 22 2 6 2 0 48 0 6 3 134 2008 2009 2010 46657487.0902493 39 2 5 2 6 2 1 138 1 28 7 135 2006 2008 2011 50431993.2952603 99 2 22 2 9 2 0 111 6 1 12 136 2006 . . 76709347.4536843 6 4 5 3 6 4 1 0 0 0 0 138 2007 2007 2016 75955110.4088131 117 2 10 2 6 2 0 55 2 7 0 141 2011 2011 2014 76896671.6247575 32 2 22 3 3 4 0 12 0 1 1 147 2005 . . 119460798.289351 27 2 5 3 8 4 0 25 0 5 6 150 2006 . 2009 142838095.258584 126 2 10 3 8 4 2 93 18 17 6 151 2006 2007 . 142838095.258584 54 2 10 3 8 4 0 76 0 1 5 152 2002 2003 2009 195251860.90752 6 2 22 3 8 4 0 1 0 0 0 158 2001 2003 2004 284780040.685256 126 2 10 3 8 4 0 70 2 5 2 161 2007 2007 2011 126476243.202136 32 2 22 3 3 4 0 69 3 0 0 165 2005 . . 376709086.746797 126 4 5 4 6 2 1 56 6 2 3 178 2003 . 2010 1285581480.55598 126 2 10 2 6 2 0 30 0 0 1 183 2007 2008 2016 455939049.568194 54 2 10 3 3 4 0 3 0 0 0 195 2010 2011 2016 604316577.717511 100 2 22 3 3 4 2 7 1 15 7 201 2009 2009 2011 67858366.4868061 26 2 5 3 3 4 27 97 7 89 11 205 2009 . 2011 . 46 2 10 3 3 4 0 23 0 32 4 206 2002 . . . 6 2 5 4 6 2 0 14 2 1 0 207 2007 2013 2014 1714662912.39374 126 2 22 3 3 4 4 1 0 1 6 208 2006 . . 50963221.6416431 126 3 24 2 6 2 1 50 3 7 11 230 2007 . . 7046826.46655975 130 2 24 2 5 2 0 46 5 4 9 231 2007 2007 2009 . 51 2 22 2 5 2 16 47 5 26 8 233 2007 . 2007 . 133 2 10 4 9 2 1 127 5 18 9 234 2007 2009 2011 71007764.028131 81 2 22 2 5 2 2 56 15 12 8 237 2002 2004 2006 8166998.40081115 24 2 24 2 5 2 5 146 4 48 4 239 2004 2004 2005 . 113 2 22 2 5 2 0 60 6 0 3 243 2006 2006 2008 14107466.1983787 148 2 5 3 6 1 0 93 4 1 2 246 2004 2007 2009 23723530.2487169 126 2 22 3 8 4 0 117 12 3 2 248 2005 . . 61215226.5963546 126 3 24 3 6 2 1 5 0 0 0 256 2011 . 2010 107386459.763923 99 2 15 3 6 1 1 92 2 2 5 277 2001 2001 2001 100933536.379289 23 2 1 2 1 2 1 135 2 0 5 278 2002 . . . 26 2 1 4 2 2 6 14 0 5 3 284 2003 . . 12686659.3475919 26 2 14 2 5 2 0 55 0 7 3 285 2007 2009 . . 51 2 2 2 4 2 0 105 8 2 3 286 2007 2009 2009 . 51 2 13 1 7 3 30 0 0 0 0 287 2003 . . 331144.132070496 26 2 14 2 5 2 0 76 3 1 3 288 2002 2002 2002 . 23 2 8 2 5 2 1 63 0 2 2 289 2011 2012 2016 578397559.017688 26 2 10 3 3 4 1 18 0 5 24 295 2005 . . . 26 3 2 2 4 2 0 104 0 2 9 296 2006 . 2007 1618880.71740566 26 2 8 2 5 2 0 3 0 0 0 299 2006 2006 2006 . 23 2 13 1 5 3 0 26 8 0 3 301 2010 . . . 19 2 8 2 7 2 3 78 5 25 15 311 2007 . 2007 50042637.9057477 26 2 1 2 1 2 0 13 3 3 1 314 2009 . 2015 9541930.41161445 26 2 14 2 6 2 0 36 0 4 5 315 2007 2008 2010 35103578.0538028 26 2 24 2 6 2 2 79 12 11 3 316 2007 2007 2007 43725509.505614 23 2 1 2 1 2 0 23 0 1 1 317 2007 . 2007 . 26 2 5 2 5 2 1 172 1 54 14 319 2007 . 2008 686736.333320675 23 2 14 2 5 2 2 91 6 7 4 321 2007 . . 91223.5586823527 26 5 13 1 5 3 0 8 0 0 0 326 2000 . . . 32 4 13 1 5 3 0 108 7 3 7 334 2001 . 2001 93850162.5408425 32 2 1 2 1 2 0 1 0 0 0 337 2000 . 2000 . 19 2 9 2 5 2 2 90 1 1 0 338 2010 2010 . . 26 3 22 2 5 2 1 39 3 21 5 end label values recip2 recip2 label def recip2 4 "Algeria", modify label def recip2 6 "Angola", modify label def recip2 16 "Benin", modify label def recip2 19 "Botswana", modify label def recip2 23 "Burundi", modify label def recip2 24 "Cabo Verde", modify label def recip2 26 "Cameroon", modify label def recip2 27 "Central African Republic", modify label def recip2 32 "Congo", modify label def recip2 39 "Democratic Republic of the Congo", modify label def recip2 46 "Equatorial Guinea", modify label def recip2 48 "Ethiopia", modify label def recip2 51 "Gabon", modify label def recip2 54 "Ghana", modify label def recip2 58 "Guinea-Bissau", modify label def recip2 81 "Mali", modify label def recip2 95 "Namibia", modify label def recip2 99 "Niger", modify label def recip2 100 "Nigeria", modify label def recip2 113 "Rwanda", modify label def recip2 117 "Senegal", modify label def recip2 120 "Sierra Leone", modify label def recip2 126 "Sudan", modify label def recip2 130 "Tanzania", modify label def recip2 133 "Togo", modify label def recip2 148 "Zambia", modify label values status2 status2 label def status2 2 "Completion", modify label def status2 3 "Implementation", modify label def status2 4 "Pipeline: Commitment", modify label def status2 5 "Pipeline: Pledge", modify label values sectorname2 sectorname2 label def sectorname2 1 "ACTION RELATING TO DEBT", modify label def sectorname2 2 "AGRICULTURE, FORESTRY, FISHING", modify label def sectorname2 5 "COMMUNICATIONS", modify label def sectorname2 8 "EDUCATION", modify label def sectorname2 9 "EMERGENCY RESPONSE", modify label def sectorname2 10 "ENERGY", modify label def sectorname2 13 "GOVERNMENT AND CIVIL SOCIETY", modify label def sectorname2 14 "HEALTH", modify label def sectorname2 15 "INDUSTRY, MINING, CONSTRUCTION", modify label def sectorname2 18 "OTHER SOCIAL INFRASTRUCTURE AND SERVICES", modify label def sectorname2 22 "TRANSPORT AND STORAGE", modify label def sectorname2 24 "WATER SUPPLY AND SANITATION", modify label values flowclass2 flowclass2 label def flowclass2 1 "Military", modify label def flowclass2 2 "ODA-like", modify label def flowclass2 3 "OOF-like", modify label def flowclass2 4 "Vague (Official Finance)", modify label values flowtype2 flowtype2 label def flowtype2 1 "Debt forgiveness", modify label def flowtype2 2 "Debt rescheduling", modify label def flowtype2 3 "Export Buyer's Credit", modify label def flowtype2 4 "Free-standing technical assistance", modify label def flowtype2 5 "Grant", modify label def flowtype2 6 "Loan", modify label def flowtype2 7 "Scholarships/training in the donor country", modify label def flowtype2 8 "Supplier's Credit/Export Seller's Credit", modify label def flowtype2 9 "Vague TBD", modify label values intent2 intent2 label def intent2 1 "Commercial", modify label def intent2 2 "Development", modify label def intent2 3 "Military", modify label def intent2 4 "Mixed", modify label def intent2 5 "Representational", modify
Comment