Dear statalists, I'm trying to obtain some resuts with xtabond2 but, when I don't use the collapse suboption I get AR2 significant test. Is it correct to use further lags in order to solve this problem from a specification point of view?
This is one of my results
with L.LSECI considered as endogenous I thought that it would be necessary the third lag as first. The other problem is the relatively high value fo the Hansen test: could it be too much high?
How fast does the p-value of the test increase, when there are many instruments?
This is one of my results
Code:
xtabond2 LSECI L.LSECI LRR1 LSFI1 LPA LHC i.year , gmm(L.LSECI, lag(2 3) ) gmm(LRR1, lag(1 2)) iv( LSFI1 LPA LHC i.year) > twostep robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. 2002b.year dropped due to collinearity 2017.year dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: Code Number of obs = 1369 Time variable : year Number of groups = 106 Number of instruments = 106 Obs per group: min = 1 Wald chi2(20) = 7134.64 avg = 12.92 Prob > chi2 = 0.000 max = 16 ------------------------------------------------------------------------------ | Corrected LSECI | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- LSECI | L1. | .6976077 .1281166 5.45 0.000 .4465037 .9487117 | LRR1 | .0064297 .0066735 0.96 0.335 -.0066501 .0195096 LSFI1 | -.0960979 .0449557 -2.14 0.033 -.1842093 -.0079864 LPA | .0203076 .0153201 1.33 0.185 -.0097193 .0503345 LHC | .1835515 .0900324 2.04 0.041 .0070912 .3600118 | year | 2003 | .0168603 .0426234 0.40 0.692 -.06668 .1004006 2004 | -.0424606 .0410275 -1.03 0.301 -.122873 .0379518 2005 | .0705754 .0527377 1.34 0.181 -.0327886 .1739395 2006 | .0161151 .0387876 0.42 0.678 -.0599073 .0921375 2007 | .0092724 .0382754 0.24 0.809 -.065746 .0842909 2008 | -.0378717 .0531334 -0.71 0.476 -.1420114 .0662679 2009 | -.0177835 .0446723 -0.40 0.691 -.1053397 .0697726 2010 | .0131428 .0431673 0.30 0.761 -.0714636 .0977492 2011 | -.021425 .0428425 -0.50 0.617 -.1053948 .0625449 2012 | -.0091968 .040068 -0.23 0.818 -.0877285 .069335 2013 | .0069627 .0424752 0.16 0.870 -.0762872 .0902126 2014 | -.0251427 .0358895 -0.70 0.484 -.0954848 .0451993 2015 | .0025728 .0341697 0.08 0.940 -.0643986 .0695443 2016 | -.0532734 .0483048 -1.10 0.270 -.1479491 .0414023 2018 | -.0106388 .0373712 -0.28 0.776 -.0838851 .0626075 | _cons | -.1478692 .1113342 -1.33 0.184 -.3660802 .0703417 ------------------------------------------------------------------------------ Instruments for first differences equation Standard D.(LSFI1 LPA LHC 2002b.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/2).LRR1 L(2/3).L.LSECI Instruments for levels equation Standard LSFI1 LPA LHC 2002b.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.LRR1 DL.L.LSECI ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -4.09 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = 2.54 Pr > z = 0.011 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(85) = 93.31 Prob > chi2 = 0.252 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(85) = 87.53 Prob > chi2 = 0.404 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(55) = 57.75 Prob > chi2 = 0.374 Difference (null H = exogenous): chi2(30) = 29.79 Prob > chi2 = 0.477 gmm(L.LSECI, lag(2 3)) Hansen test excluding group: chi2(44) = 38.60 Prob > chi2 = 0.702 Difference (null H = exogenous): chi2(41) = 48.93 Prob > chi2 = 0.185 gmm(LRR1, lag(1 2)) Hansen test excluding group: chi2(39) = 35.11 Prob > chi2 = 0.648 Difference (null H = exogenous): chi2(46) = 52.42 Prob > chi2 = 0.239 iv(LSFI1 LPA LHC 2002b.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year > 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year) Hansen test excluding group: chi2(67) = 69.66 Prob > chi2 = 0.388 Difference (null H = exogenous): chi2(18) = 17.88 Prob > chi2 = 0.464
How fast does the p-value of the test increase, when there are many instruments?
Comment