Hi all. I’m writing a paper about the effect of govt’ advertising per county in an Argentine province for two elections. The dependent variable is “ps_gov_vote_share” (socialist party’s vote share for governor) and the main independent variable is “ln_total_r_ad_spend_cap” (total spending with ads per capita logged).
My main question relates to the size of the effect of “ln_total_r_ad_spend_cap”.
I need to know whether the effect is small, moderate or large when reporting the results. The output from the semi-elasticities follow below.
The value of .083 for "ln_total_r_ad_spend_cap" can be considered a small effect?
Thank you.
My main question relates to the size of the effect of “ln_total_r_ad_spend_cap”.
I need to know whether the effect is small, moderate or large when reporting the results. The output from the semi-elasticities follow below.
The value of .083 for "ln_total_r_ad_spend_cap" can be considered a small effect?
Thank you.
Code:
quietly: xi: ivregress 2sls ps_dep_vote_share ln_pop ln_pop_dens prop_pop_14_years_more perc_healthcare_cov perc_pop_seniors perc_analfabetos perc_pop_desocupados perc_nbi i.seccional i.year (ln_total_r_ad_spend_cap = rate_libraries_100t properties), robust cluster(localidad) margins, eydx(*)
Code:
Average marginal effects Number of obs = 720 Model VCE: Robust Expression: Linear prediction, predict() ey/dx wrt: ln_total_r_ad_spend_cap ln_pop ln_pop_dens prop_pop_14_years_more perc_healthcare_cov perc_pop_seniors perc_analfabetos perc_pop_desocupados perc_nbi _Iseccional_2 _Iseccional_3 _Iseccional_4 _Iseccional_5 _Iseccional_6 _Iseccional_7 _Iseccional_8 _Iseccional_9 _Iseccional_10 _Iseccional_11 _Iseccional_12 _Iseccional_13 _Iseccional_14 _Iseccional_15 _Iseccional_16 _Iseccional_17 _Iseccional_18 _Iseccional_19 _Iyear_2015 ----------------------------------------------------------------------------------------- | Delta-method | ey/dx std. err. z P>|z| [95% conf. interval] ------------------------+---------------------------------------------------------------- ln_total_r_ad_spend_cap | .0830077 .0423331 1.96 0.050 .0000365 .165979 ln_pop | -.1023227 .0347665 -2.94 0.003 -.1704638 -.0341816 ln_pop_dens | .0161023 .0184456 0.87 0.383 -.0200503 .0522549 prop_pop_14_years_more | -.4680305 .5370263 -0.87 0.383 -1.520583 .5845217 perc_healthcare_cov | .0058763 .139075 0.04 0.966 -.2667057 .2784583 perc_pop_seniors | .3367992 .589979 0.57 0.568 -.8195385 1.493137 perc_analfabetos | -1.270178 1.446377 -0.88 0.380 -4.105025 1.564669 perc_pop_desocupados | -1.445664 1.197676 -1.21 0.227 -3.793065 .9017375 perc_nbi | -.6554313 .355108 -1.85 0.065 -1.35143 .0405675 _Iseccional_2 | -.0059292 .0868682 -0.07 0.946 -.1761877 .1643293 _Iseccional_3 | .0146855 .0769567 0.19 0.849 -.1361469 .1655178 _Iseccional_4 | -.071583 .0777253 -0.92 0.357 -.2239219 .0807559 _Iseccional_5 | .2832511 .1121816 2.52 0.012 .0633792 .503123 _Iseccional_6 | .0505496 .0722534 0.70 0.484 -.0910646 .1921637 _Iseccional_7 | .3946172 .0874035 4.51 0.000 .2233095 .565925 _Iseccional_8 | .016916 .1014999 0.17 0.868 -.1820202 .2158522 _Iseccional_9 | .0502337 .0775807 0.65 0.517 -.1018216 .202289 _Iseccional_10 | .0922804 .0765663 1.21 0.228 -.0577869 .2423476 _Iseccional_11 | .2379143 .1010667 2.35 0.019 .0398272 .4360014 _Iseccional_12 | -.074107 .089389 -0.83 0.407 -.2493062 .1010922 _Iseccional_13 | .3139516 .0820587 3.83 0.000 .1531195 .4747837 _Iseccional_14 | .147159 .0952811 1.54 0.122 -.0395884 .3339065 _Iseccional_15 | .0419176 .0757153 0.55 0.580 -.1064818 .1903169 _Iseccional_16 | .1274646 .0890123 1.43 0.152 -.0469963 .3019256 _Iseccional_17 | -.0506149 .083844 -0.60 0.546 -.2149462 .1137164 _Iseccional_18 | .0766642 .0866556 0.88 0.376 -.0931776 .246506 _Iseccional_19 | .2563277 .1082632 2.37 0.018 .0441358 .4685196 _Iyear_2015 | .2720629 .0164858 16.50 0.000 .2397514 .3043745 ————————————————————————————————————————————
Comment