Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Identifying Missing Data for All Years in Panel Data

    My data is panel data and I am trying to list/identify Tickers that has missing values for ChangeSales for all years. Lastly, I would just drop them from the sample.

    I am a newbie in Stata and it would be really helpful if I could get some lead on which commands would come handy so that I could dig on them more.

    Thank you in advance

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input str9 Ticker int Year double WC01001 float(id ChangeSales)
    "TH:2S"  1993        . 1        .
    "TH:2S"  1994        . 1        .
    "TH:2S"  1995        . 1        .
    "TH:2S"  1996        . 1        .
    "TH:2S"  1997        . 1        .
    "TH:2S"  1998        . 1        .
    "TH:2S"  1999        . 1        .
    "TH:2S"  2000        . 1        .
    "TH:2S"  2001        . 1        .
    "TH:2S"  2002        . 1        .
    "TH:2S"  2003        . 1        .
    "TH:2S"  2004        . 1        .
    "TH:2S"  2005        . 1        .
    "TH:2S"  2006  2396580 1        .
    "TH:2S"  2007  2967800 1   571220
    "TH:2S"  2008  2795130 1  -172670
    "TH:2S"  2009  2559971 1  -235159
    "TH:2S"  2010  2812507 1   252536
    "TH:2S"  2011  3694521 1   882014
    "TH:2S"  2012  4058632 1   364111
    "TH:2S"  2013  4092036 1    33404
    "TH:2S"  2014  4235393 1   143357
    "TH:7UP" 1993        . 2        .
    "TH:7UP" 1994        . 2        .
    "TH:7UP" 1995        . 2        .
    "TH:7UP" 1996        . 2        .
    "TH:7UP" 1997        . 2        .
    "TH:7UP" 1998        . 2        .
    "TH:7UP" 1999        . 2        .
    "TH:7UP" 2000        . 2        .
    "TH:7UP" 2001  4862969 2        .
    "TH:7UP" 2002  5379531 2   516562
    "TH:7UP" 2003  4710713 2  -668818
    "TH:7UP" 2004  5630530 2   919817
    "TH:7UP" 2005 10402038 2  4771508
    "TH:7UP" 2006 13243907 2  2841869
    "TH:7UP" 2007 10404109 2 -2839798
    "TH:7UP" 2008  8389721 2 -2014388
    "TH:7UP" 2009  5858009 2 -2531712
    "TH:7UP" 2010  6337317 2   479308
    "TH:7UP" 2011  5979980 2  -357337
    "TH:7UP" 2012  5116875 2  -863105
    "TH:7UP" 2013  4733706 2  -383169
    "TH:7UP" 2014  2589388 2 -2144318
    "TH:A"   1993        . 3        .
    "TH:A"   1994        . 3        .
    "TH:A"   1995        . 3        .
    "TH:A"   1996        . 3        .
    "TH:A"   1997        . 3        .
    "TH:A"   1998        . 3        .
    "TH:A"   1999        . 3        .
    "TH:A"   2000        . 3        .
    "TH:A"   2001        . 3        .
    "TH:A"   2002        . 3        .
    "TH:A"   2003  1011632 3        .
    "TH:A"   2004  1774367 3   762735
    "TH:A"   2005   964444 3  -809923
    "TH:A"   2006   866661 3   -97783
    "TH:A"   2007   799592 3   -67069
    "TH:A"   2008   803531 3     3939
    "TH:A"   2009  3435956 3  2632425
    "TH:A"   2010  3334096 3  -101860
    "TH:A"   2011  1546887 3 -1787209
    "TH:A"   2012  1778339 3   231452
    "TH:A"   2013  1762664 3   -15675
    "TH:A"   2014  2438022 3   675358
    "TH:A5"  1993        . 4        .
    "TH:A5"  1994        . 4        .
    "TH:A5"  1995        . 4        .
    "TH:A5"  1996        . 4        .
    "TH:A5"  1997        . 4        .
    "TH:A5"  1998        . 4        .
    "TH:A5"  1999        . 4        .
    "TH:A5"  2000        . 4        .
    "TH:A5"  2001        . 4        .
    "TH:A5"  2002    51565 4        .
    "TH:A5"  2003   230007 4   178442
    "TH:A5"  2004   311785 4    81778
    "TH:A5"  2005   269865 4   -41920
    "TH:A5"  2006   167860 4  -102005
    "TH:A5"  2007   263836 4    95976
    "TH:A5"  2008   270199 4     6363
    "TH:A5"  2009   311487 4    41288
    "TH:A5"  2010   156315 4  -155172
    "TH:A5"  2011   413279 4   256964
    "TH:A5"  2012   207449 4  -205830
    "TH:A5"  2013    92059 4  -115390
    "TH:A5"  2014    63733 4   -28326
    "TH:AA"  1993   194339 5        .
    "TH:AA"  1994   521410 5   327071
    "TH:AA"  1995   876779 5   355369
    "TH:AA"  1996  2740334 5  1863555
    "TH:AA"  1997  6676764 5  3936430
    "TH:AA"  1998  9526501 5  2849737
    "TH:AA"  1999 13008913 5  3482412
    "TH:AA"  2000 14962025 5  1953112
    "TH:AA"  2001 15641083 5   679058
    "TH:AA"  2002 14766175 5  -874908
    "TH:AA"  2003 17729242 5  2963067
    "TH:AA"  2004 20780963 5  3051721
    end
    Last edited by Farhan Hasnat; 14 Jan 2022, 02:01.

  • #2
    Missing values are sorted last. So if the first sorted value is missing and the last is missing, then they are all missing.

    Code:
    bys Ticker (ChangeSales): gen tag= missing(ChangeSales[1]) & missing(ChangeSales[_N])

    Comment


    • #3
      Code:
      by Ticker (ChangeSales), sort: gen wanted = ChangeSales[1] == .
      missing is treated as larger than any non-missing value, so if the smallest value of ChangeSales (i.e. ChangeSales[1]) is missing, ChangeSales is always missing.
      Last edited by Øyvind Snilsberg; 14 Jan 2022, 02:15.

      Comment


      • #4
        Andrew Musau and Øyvind Snilsberg Thank you so much ! The codes worked perfectly for me. I sorted the list and dropped the missing observations accordingly

        Comment

        Working...
        X