Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Testing coefficients statistical significance

    how do I test a single category of a categorical variables coefficients statistical significance ?

  • #2
    Can you show me the data (using dataex) you used as well as the regression estimator you used? Welcome to Statalist.

    Comment


    • #3
      Martin:
      welcome to this forum.
      Jared's advice is 100% helpful: please read and act on the FAq on how to post (more) effectively.
      That said, due to your scant description, guess-work seems the only way to go:
      Code:
      . sysuse auto.dta
      (1978 automobile data)
      
      . regress price i.rep78
      
            Source |       SS           df       MS      Number of obs   =        69
      -------------+----------------------------------   F(4, 64)        =      0.24
             Model |  8360542.63         4  2090135.66   Prob > F        =    0.9174
          Residual |   568436416        64     8881819   R-squared       =    0.0145
      -------------+----------------------------------   Adj R-squared   =   -0.0471
             Total |   576796959        68  8482308.22   Root MSE        =    2980.2
      
      ------------------------------------------------------------------------------
             price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
      -------------+----------------------------------------------------------------
             rep78 |
                2  |   1403.125   2356.085     0.60   0.554    -3303.696    6109.946
                3  |   1864.733   2176.458     0.86   0.395    -2483.242    6212.708
                4  |       1507   2221.338     0.68   0.500    -2930.633    5944.633
                5  |     1348.5   2290.927     0.59   0.558    -3228.153    5925.153
                   |
             _cons |     4564.5   2107.347     2.17   0.034     354.5913    8774.409
      ------------------------------------------------------------------------------
      
      . mat list e(b)
      
      e(b)[1,6]
                 1b.         2.         3.         4.         5.          
              rep78      rep78      rep78      rep78      rep78      _cons
      y1          0   1403.125  1864.7333       1507     1348.5     4564.5
      
      . test 2.rep78
      
       ( 1)  2.rep78 = 0
      
             F(  1,    64) =    0.35
                  Prob > F =    0.5536
      
      .
      Kind regards,
      Carlo
      (StataNow 18.5)

      Comment


      • #4
        I regressed [wellbeing female age age2 ib3.qual1 ib3.health ib6.region] and now need to test the statistical significance of category 1 of the qual1 variable and for the London category that is apart of the region variable. Thank you





        Code:
        * Example generated by -dataex-. For more info, type help dataex
        clear
        input long pidp float(netpay_may netpay_base ghq_may ghq_base ______________) int age float female byte(region qual health job_status urban ethnic marstat life_sat) float(vaccine furloughed_may pay wellbeing) byte Gender float(qual1 age2)
           76165 109.80058 111.70615 12 11 0 35 1  5 3 2 1 1 1 1 6 0 0  -1.905571   1 1 2 1225
          280165  82.13687  68.99497  7  7 0 39 1  8 4 2 1 0 1 1 5 0 1    13.1419   0 1 2 1521
          599765  84.23958  85.12666  7  7 0 31 1  5 2 2 1 1 1 5 7 0 0  -.8870773   0 1 1  961
          732365         .         . 31 22 0 33 0  2 9 5 4 1 1 5 2 0 0          .   9 1 3 1089
         1587125  85.71429  85.71429 12 23 0 52 1  1 2 3 1 1 3 5 4 0 0          0 -11 1 1 2704
         4849085 103.49246  95.60732 15 35 0 35 0 11 1 3 1 1 1 1 2 1 0   7.885139 -20 1 1 1225
        68002725         .         .  6 11 0 64 1  7 3 4 4 1 3 4 4 0 .          .  -5 1 2 4096
        68010887  459.9665  42.71117 18  7 0 54 1  1 1 2 3 1 1 1 6 1 0   417.2553  11 1 1 2916
        68031967         .         . 10 23 0 70 1  5 4 4 4 1 1 3 3 0 0          . -13 1 2 4900
        68035365         .         . 11  7 0 66 0  7 5 3 4 1 1 3 5 0 0          .   4 1 2 4356
        68035367 128.13351 121.56257 30 12 0 37 0  1 1 3 1 0 1 1 7 0 0   6.570946  18 1 1 1369
        68041487 101.84972  105.1352  5 10 0 48 1 11 1 2 1 0 1 1 6 0 0  -3.285477  -5 1 1 2304
        68045567  77.57006  77.27437  5  7 0 56 1  1 1 2 1 0 1 1 6 0 0  .29569244  -2 1 1 3136
        68046247         .         .  6  9 0 75 0  1 3 2 4 0 1 1 6 0 0          .  -3 1 2 5625
        68046251         .         .  8  8 0 73 1  1 4 2 4 0 1 1 6 0 0          .   0 1 2 5329
        68051007 23.622564 23.622564 20 19 0 57 0  1 1 3 1 1 1 1 3 0 0          0   1 1 1 3249
        68051011  68.99497 75.565926 21  9 0 50 1  1 2 2 1 1 1 1 6 1 0  -6.570953  12 1 1 2500
        68058487         .         . 13 10 0 78 0  1 1 3 4 0 1 1 6 1 0          .   3 1 1 6084
        68058491         .         . 23 22 0 69 1  1 4 3 4 0 1 1 6 0 0          .   1 1 2 4761
        68060527  88.70782  95.27877 10  7 0 44 0  1 1 2 1 0 1 1 6 0 0  -6.570946   3 1 1 1936
        68060533         .         .  8 21 0 62 1  7 4 3 3 1 2 1 5 0 0          . -13 1 2 3844
        68060537         .         .  7  7 0 74 0  7 1 2 4 1 3 1 6 1 0          .   0 1 1 5476
        68061288 12.221967  25.85669 13 11 0 32 1  1 1 3 2 1 1 2 5 0 0  -13.63472   2 1 1 1024
        68063247 17.714285 19.285715  6  6 0 51 1  2 4 2 4 1 1 1 7 0 0 -1.5714302   0 1 2 2601
        68063927         .         . 10  7 0 48 1  2 5 1 1 1 1 1 6 1 0          .   3 1 2 2304
        68063931   39.4257 36.140224 12  8 0 50 0  2 2 3 1 1 1 1 4 0 0   3.285473   4 1 1 2500
        68064605         .         .  7  6 0 69 0  7 2 4 4 1 1 1 7 1 0          .   1 1 1 4761
        68064609         .         .  6  7 0 66 1  7 4 3 4 1 1 1 1 1 0          .  -1 1 2 4356
        68068007  68.99497  68.99497  6  6 0 51 0  2 4 3 4 1 1 1 6 0 0          0   0 1 2 2601
        68068011  60.78128  60.78128  7  9 0 51 1  2 4 3 1 1 1 1 6 0 0          0  -2 1 2 2601
        68068015  56.31304   52.5676 10  6 0 26 1  2 3 2 4 1 1 2 6 0 0  3.7454414   4 1 2  676
        68097245         .         . 20 10 0 68 1  7 4 2 4 1 1 4 7 0 0          .  10 1 2 4624
        68097927         .         . 13 11 0 68 1  2 3 5 2 1 1 4 5 1 0          .   2 1 2 4624
        68112211  19.71285 32.854748 26 25 0 32 1  2 3 3 1 1 1 1 3 0 1   -13.1419   1 1 2 1024
        68120367         .         .  6  8 0 67 1  2 5 4 4 0 1 4 7 0 0          .  -2 1 2 4489
        68120375   62.5883  60.78128  8  9 0 38 1  2 3 1 1 1 1 5 6 0 0  1.8070145  -1 1 2 1444
        68125127  42.71117  42.71117  7  7 0 52 1  2 3 3 1 1 1 4 6 0 0          0   0 1 2 2704
        68125131  55.52452  49.57782 10  9 0 27 0  2 1 2 1 1 1 5 6 0 0   5.946709   1 1 1  729
        68125135  59.13855   52.5676 11  9 0 22 1  2 1 2 1 1 1 5 7 0 0    6.57095   2 1 1  484
        68133285         .         .  9 11 0 69 1  8 3 3 4 1 1 4 6 0 0          .  -2 1 2 4761
        68133289         .         . 27 24 0 33 1  7 1 3 2 1 1 1 6 0 0          .   3 1 1 1089
        68136009  34.85889 34.497486  6  6 0 66 1  7 4 2 2 0 1 3 6 0 0   .3614044   0 1 2 4356
        68137365         .         . 11  9 0 64 1  8 9 2 4 1 1 3 5 0 0          .   2 1 3 4096
        68138045         .         .  9  6 0 69 0  8 2 4 4 0 1 1 6 0 0          .   3 1 1 4761
        68138049         .         .  8  7 0 68 1  8 5 2 4 0 1 1 6 0 0          .   1 1 2 4624
        68138051         .         .  7 10 0 64 1  2 4 4 4 1 1 2 5 0 0          .  -3 1 2 4096
        68144847  90.48198  95.27877  7  8 0 50 0  2 3 3 3 1 1 1 6 0 0  -4.796791  -1 1 2 2500
        68144851 166.14647 162.17104 10 12 0 42 1  2 1 2 1 1 1 1 5 0 0   3.975433  -2 1 1 1764
        68148247         .         .  6  6 0 70 0  2 3 3 4 1 1 1 6 1 0          .   0 1 2 4900
        68148251         .         . 11  9 0 71 1  2 5 3 4 1 1 1 6 0 0          .   2 1 2 5041
        68150967  45.71429   39.4257  7 11 0 56 0  2 4 2 3 1 1 1 6 0 0   6.288589  -4 1 2 3136
        68150971   52.5676   52.5676 12 15 0 59 1  2 4 3 1 1 1 1 6 0 0          0  -3 1 2 3481
        68150975  59.13855  57.49581 25  5 0 30 0  2 4 2 1 1 1 5 6 0 0  1.6427383  20 1 2  900
        68155047         .         .  1 12 0 61 1  2 4 3 4 1 1 1 6 1 .          . -11 1 2 3721
        68155051  88.70782  85.42235  8  6 0 66 0  2 5 2 1 1 1 1 6 0 0   3.285477   2 1 2 4356
        68155055  45.99665   39.4257 12  8 0 29 1  2 1 2 3 1 1 5 5 0 0   6.570953   4 1 1  841
        68155731  116.3058 110.39196  9 10 0 49 1  2 1 3 1 1 1 1 5 0 0   5.913849  -1 1 1 2401
        68157767  68.99497  91.46762 15 17 0 53 1  2 3 3 2 1 1 5 6 0 0  -22.47265  -2 1 2 2809
        68159131   61.5698  59.13855 14 19 0 38 1  2 1 3 1 1 1 1 2 1 0  2.4312515  -5 1 1 1444
        68160485  17.79603         . 31 18 0 67 1  8 4 3 3 1 1 4 4 1 0          .  13 1 2 4489
        68160489  105.1352 158.79535  7 12 0 42 0  8 1 2 1 1 1 5 5 0 0  -53.66015  -5 1 1 1764
        68173407         .         . 13 10 0 61 1  2 5 3 4 1 1 1 2 0 0          .   3 1 2 3721
        68180887 12.857142 10.857142 26 19 0 48 1  2 1 4 2 1 1 1 4 0 0          2   7 1 1 2304
        68180891 122.02254 124.84805 13  9 0 46 0  2 1 2 1 1 1 1 6 0 0  -2.825508   4 1 1 2116
        68184971 26.678057   26.2838 11 11 0 43 1  2 1 1 4 1 1 1 2 1 0   .3942566   0 1 1 1849
        68185647         .         .  9  7 0 56 1  2 1 2 1 1 1 4 4 1 0          .   2 1 1 3136
        68187687         .         .  6  6 0 63 0  2 1 2 4 1 1 1 6 0 0          .   0 1 1 3969
        68187691         . 1.8070112 21 12 0 59 1  2 1 3 4 1 1 1 5 0 0          .   9 1 1 3481
        68191771  64.36246 120.46543 21  8 0 46 1  2 2 2 1 1 1 4 4 0 0  -56.10297  13 1 1 2116
        68193127         .         .  5  3 0 65 1  2 3 2 4 1 1 4 6 0 0          .   2 1 2 4225
        68195167         .         . 11 11 0 75 0  2 4 3 4 1 1 1 6 1 0          .   0 1 2 5625
        68195171         .         . 10  8 0 75 1  2 5 3 4 1 1 1 6 1 0          .   2 1 2 5625
        68195851  65.54523  60.78128  8 14 0 44 1  2 3 4 1 1 1 1 5 0 0  4.7639427  -6 1 2 1936
        68197211  44.35391  45.99665 14 10 0 45 1  2 2 2 2 1 1 2 6 0 0 -1.6427383   4 1 1 2025
        68197887  63.50823  63.50823 12  9 0 57 1  2 4 3 2 1 1 4 5 0 0          0   3 1 2 3249
        68197903 32.854748         .  5 13 0 20 0  2 9 2 4 1 1 5 4 0 0          .  -8 1 3  400
        68199247  98.56425 131.41899  5 10 0 34 0  8 3 2 1 1 1 2 6 0 0 -32.854744  -5 1 2 1156
        68202647  82.13687 75.565926  8  7 0 43 1  2 1 2 1 1 1 2 5 0 0   6.570946   1 1 1 1849
        68207407         .         .  9 10 0 74 1  2 4 2 4 1 1 1 4 1 0          .  -1 1 2 5476
        68207411         .         .  9  8 0 79 0  2 4 3 4 1 1 1 6 1 0          .   1 1 2 6241
        68211487         .         .  7  7 0 66 0  2 1 3 4 1 1 5 6 0 0          .   0 1 1 4356
        68213527         .         . 22  4 0 40 1  2 1 2 1 1 1 1 6 0 .          .  18 1 1 1600
        68214207   52.5676  55.85307 16 11 0 59 0  2 9 3 3 1 1 4 6 1 0  -3.285473   5 1 3 3481
        68214887 180.70113 180.70113 16  9 0 47 0  2 1 1 1 1 1 1 6 0 0          0   7 1 1 2209
        68214891 180.70113 147.84637  8 15 0 45 1  2 1 2 1 1 2 1 6 0 0   32.85475  -7 1 1 2025
        68216247  94.49026  93.40605 23 19 0 44 1  2 1 3 2 1 1 2 3 0 0  1.0842056   4 1 1 1936
        68216251  78.85139  88.70782 21 13 0 43 0  2 1 2 1 1 1 2 6 0 0   -9.85643   8 1 1 1849
        68219647   91.9933  88.70782  6 13 0 48 1  2 1 2 1 1 2 2 6 0 0   3.285477  -7 1 1 2304
        68231223         .         . 12 16 0 19 1  3 2 4 4 1 1 5 3 0 0          .  -4 1 1  361
        68238011  46.09521  42.64547 12 11 0 60 1  3 1 4 3 1 1 1 5 1 0   3.449749   1 1 1 3600
        68262487  42.85714   39.4257  7  6 0 48 0  3 5 3 2 0 1 2 4 0 0   3.431446   1 1 2 2304
        68266567         .         . 21 15 0 81 1  3 2 3 4 0 1 3 5 1 0          .   6 1 1 6561
        68278127         .         . 13  9 0 71 1  3 4 3 4 1 1 4 6 1 0          .   4 1 2 5041
        68288327  72.28045 65.709496  8  9 0 45 1  3 1 3 1 1 1 1 5 1 0   6.570953  -1 1 1 2025
        68288331  77.63577  77.53721  5  5 0 45 0  3 1 3 1 1 1 1 6 0 0  .09856415   0 1 1 2025
        68291731         . 18.760061 18 18 0 63 1  3 3 2 4 1 1 3 1 0 0          .   0 1 2 3969
        68293087         .         .  8  8 0 50 1  3 9 2 4 1 1 1 6 0 0          .   0 1 3 2500
        68293095         .  45.99665  9  6 0 30 0  3 3 4 1 1 1 1 6 0 0          .   3 1 2  900
        68293099   52.5676   52.5676  8  5 0 27 0  3 1 2 2 1 1 5 6 0 0          0   3 1 1  729
        68293103  47.44226  49.28212 10  4 0 16 1  3 4 2 2 1 3 5 6 1 0 -1.8398666   6 1 2  256
        end
        label values age j_dvage
        label values region j_gor_dv
        label def j_gor_dv 1 "North East", modify
        label def j_gor_dv 2 "North West", modify
        label def j_gor_dv 3 "Yorkshire and the Humber", modify
        label def j_gor_dv 5 "West Midlands", modify
        label def j_gor_dv 7 "London", modify
        label def j_gor_dv 8 "South East", modify
        label def j_gor_dv 11 "Scotland", modify
        label values qual j_hiqual_dv
        label def j_hiqual_dv 1 "Degree", modify
        label def j_hiqual_dv 2 "Other higher degree", modify
        label def j_hiqual_dv 3 "A-level etc", modify
        label def j_hiqual_dv 4 "GCSE etc", modify
        label def j_hiqual_dv 5 "Other qualification", modify
        label def j_hiqual_dv 9 "No qualification", modify
        label values health j_scsf1
        label def j_scsf1 1 "Excellent", modify
        label def j_scsf1 2 "Very good", modify
        label def j_scsf1 3 "Good", modify
        label def j_scsf1 4 "Fair", modify
        label def j_scsf1 5 "Poor", modify
        label values job_status job_status
        label def job_status 1 "Managerial/Professional", modify
        label def job_status 2 "Intermediate", modify
        label def job_status 3 "Routine", modify
        label def job_status 4 "No job", modify
        label values urban j_urban_dv
        label def j_urban_dv 1 "urban area", modify
        label values ethnic ethnic
        label def ethnic 1 "White", modify
        label def ethnic 2 "Mixed", modify
        label def ethnic 3 "Asian", modify
        label values marstat marstat
        label def marstat 1 "Married", modify
        label def marstat 2 "Living as couple", modify
        label def marstat 3 "Widowed", modify
        label def marstat 4 "Divorced/Separated", modify
        label def marstat 5 "Never married", modify
        label values life_sat j_sclfsato
        label def j_sclfsato 1 "Completely dissatisfied", modify
        label def j_sclfsato 2 "Mostly dissatisfied", modify
        label def j_sclfsato 3 "Somewhat dissatisfied", modify
        label def j_sclfsato 4 "Neither Sat nor Dissat", modify
        label def j_sclfsato 5 "Somewhat satisfied", modify
        label def j_sclfsato 6 "Mostly satisfied", modify
        label def j_sclfsato 7 "Completely satisfied", modify
        label values qual1 qual1_label
        label def qual1_label 1 "Degree or other Higher Degree", modify
        label def qual1_label 2 "A-Level GCSE and Other", modify
        label def qual1_label 3 "No Qualification", modify

        Comment


        • #5
          I'm a bit confused - as shown in Carlo Lazzaro 's post (#3), this is (1) simply
          Code:
          test 1.qual1
          and (2) is exactly the same as shown in the regression output (though there may be a different number of digits shown); so, what is going on?

          Comment


          • #6
            Rich is absolutely correct.
            As I was not able to figure out OP's goal, my toy-example aimed at showing that -test- may be what he was looking for.
            I admit that the example was unfortunate (or, as Rich wisely pointed out, nothing that the output table does not give back as a standard).
            Kind regards,
            Carlo
            (StataNow 18.5)

            Comment


            • #7
              Martin:
              do you mean something along the following lines?
              Code:
              . reg wellbeing female age age2 ib3.qual1 ib3.health ib6.region, allbase
              note: 6b.region identifies no observations in the sample.
              note: 11.region omitted because of collinearity.
              
                    Source |       SS           df       MS      Number of obs   =       100
              -------------+----------------------------------   F(15, 84)       =      1.47
                     Model |   773.63066        15  51.5753773   Prob > F        =    0.1337
                  Residual |  2938.20934        84  34.9786826   R-squared       =    0.2084
              -------------+----------------------------------   Adj R-squared   =    0.0671
                     Total |     3711.84        99  37.4933333   Root MSE        =    5.9143
              
              ------------------------------------------------------------------------------------------------
                                   wellbeing | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
              -------------------------------+----------------------------------------------------------------
                                      female |  -.5832279   1.297474    -0.45   0.654    -3.163398    1.996942
                                         age |  -.0648296   .2504649    -0.26   0.796    -.5629065    .4332474
                                        age2 |   .0005408   .0024678     0.22   0.827    -.0043666    .0054483
                                             |
                                       qual1 |
              Degree or other Higher Degree  |   2.560799   3.016708     0.85   0.398    -3.438255    8.559854
                     A-Level GCSE and Other  |   .8276746   3.012341     0.27   0.784    -5.162697    6.818046
                           No Qualification  |          0  (base)
                                             |
                                      health |
                                  Excellent  |   1.405571   3.210649     0.44   0.663    -4.979156    7.790299
                                  Very good  |   1.489965    1.39135     1.07   0.287    -1.276888    4.256818
                                       Good  |          0  (base)
                                       Fair  |  -2.014972    2.10495    -0.96   0.341    -6.200896    2.170953
                                       Poor  |   5.722094   4.550506     1.26   0.212    -3.327087    14.77127
                                             |
                                      region |
                                 North East  |   15.98857   4.572078     3.50   0.001     6.896493    25.08065
                                 North West  |   15.16272   4.341384     3.49   0.001     6.529398    23.79604
                   Yorkshire and the Humber  |   15.76608   4.635664     3.40   0.001     6.547555    24.98461
                              West Midlands  |   10.29572   5.576221     1.85   0.068    -.7932058    21.38465
                                          6  |          0  (empty)
                                     London  |   14.47203   4.778035     3.03   0.003     4.970379    23.97367
                                 South East  |   15.00662   4.822408     3.11   0.003     5.416734    24.59651
                                   Scotland  |          0  (omitted)
                                             |
                                       _cons |  -13.77806   7.987487    -1.72   0.088    -29.66205    2.105937
              ------------------------------------------------------------------------------------------------
              
              . mat list e(b)
              
              e(b)[1,20]
                                                               1.          2.         3b.          1.          2.         3b.          4.          5.
                      female         age        age2       qual1       qual1       qual1      health      health      health      health      health
              y1  -.58322794  -.06482955   .00054084   2.5607991   .82767458           0   1.4055713   1.4899646           0  -2.0149717   5.7220942
              
                           1.          2.          3.          5.         6b.          7.          8.        11o.           
                      region      region      region      region      region      region      region      region       _cons
              y1   15.988571   15.162717   15.766081   10.295721           0   14.472026   15.006622           0  -13.778056
              
              .  nlcom _b[1.qual1]*_b[7.region]
              
                     _nl_1: _b[1.qual1]*_b[7.region]
              
              ------------------------------------------------------------------------------
                 wellbeing | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
              -------------+----------------------------------------------------------------
                     _nl_1 |   37.05995   45.95018     0.81   0.420    -53.00075    127.1207
              ------------------------------------------------------------------------------
              
              .
              Kind regards,
              Carlo
              (StataNow 18.5)

              Comment

              Working...
              X