Dear Statalist community,
I am encountering the following issue and I hope you can provide some well-appreciated support.
I have a panel dataset with years, firms (PERMNO), a dummy variable (SINDUM) equal to 1 if the stock belongs to a sin industry, the share of institutional ownership by different institutions type (IO_Group1 and IO_Group2), and a series of firms characteristics.
Please find below an extract of the dataset:
I am running the following two regressions to define the effect of being a sin stock on the share of institutional ownership of each institution's group, and I now want to test if the coefficient in front of SINDUM is significantly different between the two regressions (-0.0211182 for group1 vs. -0.0110016 for group 2).


What I need to perform is a t-test of the difference of coefficients in from of SINDUM. However, I am not sure how to properly do that and I did not find clarity reading related posts in the forum and additional material.
Any help on how to proceed will be extremely appreciated.
Thank you so much in advance!
Marco
I am encountering the following issue and I hope you can provide some well-appreciated support.
I have a panel dataset with years, firms (PERMNO), a dummy variable (SINDUM) equal to 1 if the stock belongs to a sin industry, the share of institutional ownership by different institutions type (IO_Group1 and IO_Group2), and a series of firms characteristics.
Please find below an extract of the dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float year double PERMNO float(SINDUM IO_Group1 IO_Group2 NASDAQ avg_monthly_ GDUM Industry_Group ln_mktcap std_ret PRINV Ind_Beta) byte SP500 1980 10006 0 .2288849 .10688472 0 .03520581 0 25 12.93462 .01899269 .02173913 1.3557777 1 1980 10057 0 .3458411 .13607116 0 .011569367 0 21 11.59875 .025129836 .03921569 1.1703357 1 1980 10137 0 .149071 .0039786734 0 .001860543 0 31 13.224848 .014465132 .07272727 .6062865 0 1980 10145 0 .3023002 .071859464 0 .014321812 0 14 14.24181 .02213571 .01869159 1.0285842 1 1980 10153 0 .22167355 .1131937 0 .013583386 0 21 13.02376 .016671631 .02749141 1.1703357 1 1980 10161 0 .13648039 .02537558 0 .001627064 0 28 14.755895 .021482565 .024242423 1.2662623 1 1980 10225 1 .135169 .016797788 0 .019444404 1 5 13.793976 .01143477 .012903226 .6315187 1 1980 10233 0 .372721 .12323527 0 -.02320379 0 32 13.53831 .0195707 .037209302 .3326351 1 1980 10241 0 .10267988 .034972455 0 -.0044535324 0 39 13.283033 .012843922 .03292181 .7644835 1 1980 10321 0 .03000632 .002938957 0 -.03787826 0 23 12.30493 .031573396 .2580645 .8140485 1 1980 10364 0 .09908443 .02024025 0 .032141432 0 19 14.0629 .03956298 .023121387 1.2283193 1 1980 10372 0 .25515106 .05919303 0 .02286302 0 21 13.797174 .013786243 .03041825 1.1703357 1 1980 10400 0 .009795918 0 1 .03475175 0 41 9.108792 .03565637 .13559322 1.1439214 0 1980 10401 0 .14741868 .012320025 0 .00161488 0 32 14.539044 .010529038 .02088773 .3326351 1 1980 10460 0 .13018975 .009051168 0 .03090043 0 37 12.632612 .02750598 .03187251 1.3969642 0 1980 10479 0 .12789172 .019240994 0 .02890133 1 2 12.258307 .02982669 .04255319 .7133265 1 1980 10487 0 .17158444 .07714452 0 .01973763 0 19 13.051404 .02242192 .023188407 1.2283193 1 1980 10516 0 .3434802 .0592393 0 .025506524 1 2 14.313866 .028647194 .026936026 .7133265 0 1980 10559 0 .327504 .10640749 0 .022181774 0 42 12.710895 .01896831 .04081633 .91574 1 1980 10604 0 .3860586 .05507669 0 .04859649 0 30 16.531906 .022199374 .015717093 1.1877681 1 1980 10640 0 .09296254 .004157208 1 .08638733 0 37 10.62051 .03933501 .0860215 1.3969642 0 1980 10656 0 .03767383 .03180561 1 .014107432 0 49 9.632171 .010118206 .07017544 1.238279 0 1980 10672 0 0 .0448895 1 -.023886714 0 17 9.069698 .027649453 .16666667 1.1980772 0 1980 10698 0 .13901506 .016242187 0 .03283859 0 30 12.078012 .017308839 .01509434 1.1877681 0 1980 10727 1 .005720453 0 0 .035985466 1 5 9.679226 .0213405 .11594203 .6315187 0 1980 10743 0 0 .003733109 0 -.005270798 0 16 9.92868 .02297878 .17391305 1.0005699 0 1980 10751 0 .19257134 .02095622 0 .04130324 0 24 14.118132 .02094786 .016949153 1.431364 1 1980 10752 0 .02648987 .04021057 1 .020439854 0 12 10.711892 .032713477 .07476635 .9244894 0 1980 10779 0 .5140238 0 1 .10454148 0 35 9.906508 .034979694 .03773585 .9750789 0 1980 10786 0 .13862191 .06813726 0 .0279367 0 19 13.957016 .019081216 .03791469 1.2283193 1 1980 10787 0 .006479907 .04793885 1 .033959404 0 8 9.933241 .02632722 .08333334 1.0014412 0 1980 10823 0 .032008037 .006361618 0 .004966514 0 31 12.01707 .01512574 .04733728 .6062865 1 1980 10866 0 .1997315 .0441126 0 .02527296 0 10 12.50855 .014973982 .032258064 .9145566 1 1980 10874 0 .1337839 .05887731 0 .0229719 0 21 12.65497 .02592051 .06451613 1.1703357 1 1980 10875 0 .004023346 0 1 .05884353 0 17 10.068825 .04117799 .14159292 1.1980772 0 1980 10890 0 .4020038 .064274974 0 -.02644129 0 35 14.620357 .01890795 .018561484 .9750789 1 1980 10989 0 .3065874 .04960364 0 .009682855 1 2 14.15572 .015389995 .015873017 .7133265 1 1980 11017 0 .006807738 .0019411397 0 .0380074 0 27 11.905925 .04505499 .03960396 1.1383986 0 1980 11105 0 .15503293 .03646003 0 -.007387604 0 17 11.996092 .017085526 .08333334 1.1980772 0 1980 11157 0 .002508781 0 1 .04654696 0 37 10.659618 .006322898 .09356725 1.3969642 0 1980 11164 0 .17500204 .018895254 0 -.009026975 0 21 11.419044 .01738633 .05369128 1.1703357 1 1980 11260 0 .0028749795 .0004154659 0 -.0030215334 0 23 12.696165 .04023177 .2051282 .8140485 1 1980 11295 0 .07254504 .028578514 0 .006236329 0 10 11.341835 .02428242 .10526316 .9145566 1 1980 11308 0 .3258814 .04584682 0 .0046009556 1 3 15.213576 .015473415 .029962547 .58990544 1 1980 11332 0 .27467763 .05948355 0 .01093607 0 21 13.289512 .016478788 .02209945 1.1703357 0 1980 11340 0 .10447034 .030435145 0 .013512406 0 31 14.103334 .02054711 .02484472 .6062865 1 1980 11404 0 .08397447 .02519654 0 .01342228 0 31 14.264595 .01247805 .040201 .6062865 1 1980 11447 0 .31437185 .034816056 0 .018418683 0 39 13.88369 .014768132 .03065134 .7644835 1 1980 11471 0 .3244238 .0497019 0 .035637364 0 30 15.770602 .02034548 .015296367 1.1877681 1 1980 11498 1 .02226657 .014267047 0 .04906895 1 5 11.768157 .015224093 .02173913 .6315187 0 1980 11587 0 .005791666 0 1 .05213537 0 49 10.641847 .01424542 .02580645 1.238279 0 1980 11607 0 .2693792 .03876031 0 -.006845783 0 23 13.517178 .02187751 .04678363 .8140485 1 1980 11674 0 .04058303 .001696863 0 .0017864225 0 31 13.725431 .012353851 .09195402 .6062865 1 1980 11690 0 .042083 .008780142 0 .06204396 0 27 14.327272 .03193229 .011627907 1.1383986 1 1980 11691 0 .08878569 .010914394 1 .030340254 0 40 11.944098 .021991987 .031189084 1.3212353 0 1980 11703 0 .4433838 .034620985 0 .01094536 0 14 15.637827 .017423743 .023809524 1.0285842 1 1980 11754 0 .3746806 .04556205 0 .03681411 0 9 16.017841 .018192044 .014336918 .8329948 1 1980 11762 0 .2633958 .02854686 0 .015950628 0 23 13.40209 .018339556 .03508772 .8140485 1 1980 11790 0 .004069176 .011427603 1 .011539298 0 1 11.187895 .017994316 .027210884 1.3562742 0 1980 11798 0 0 .003892565 1 -.05473204 1 43 7.786734 .05728691 1.0666667 1.2091174 0 1980 11843 0 .01649282 .007734889 1 .0500026 1 3 9.895613 .02707507 .16842106 .58990544 0 1980 11850 0 .3402529 .030187305 0 .04156378 0 30 17.366177 .015448513 .0124031 1.1877681 1 1980 11851 0 .09629323 0 1 .001539781 0 6 9.010852 .009273169 .062992126 1.2298396 0 1980 11981 0 .12308236 .04124983 0 .036330123 0 28 14.469102 .030749535 .016427105 1.2662623 0 1980 11982 0 .1621101 .010452962 1 -.02659742 0 8 9.340518 .036482867 .12598425 1.0014412 0 1980 12036 0 .4441433 .05837377 0 .011316582 0 25 12.99981 .02091528 .026936026 1.3557777 0 1980 12044 1 .027047006 0 0 .03105042 1 5 10.10962 .02702507 .09756097 .6315187 0 1980 12052 0 .1763499 .0796245 0 .03761153 0 25 14.378284 .024514707 .023391813 1.3557777 1 1980 12053 0 .1891945 0 1 .035487745 0 22 8.006368 .05789838 2 1.118277 0 1980 12060 0 .362441 .03432566 0 .02249976 0 9 16.451033 .014163077 .01632653 .8329948 1 1980 12079 0 .22019586 .015457222 0 -.0016229085 0 23 16.11358 .018304061 .02222222 .8140485 1 1980 12087 0 .01917272 .005147446 0 .004702657 0 17 10.493522 .029231356 .10526316 1.1980772 0 1980 12095 0 .3299649 .08599636 0 .02072519 0 36 14.044875 .01901917 .02234637 1.253005 1 1980 12140 0 .15066363 .04618109 0 .027802264 0 23 12.917225 .01870747 .040201 .8140485 1 1980 12240 0 .013944694 .02758804 1 .10249539 0 30 12.680927 .04524416 .02631579 1.1877681 0 1980 12319 0 .0786549 .016833412 0 .07253741 0 27 13.923724 .03356334 .015267176 1.1383986 1 1980 12320 0 .1987866 0 1 .002735733 0 19 10.100451 .015694693 .06060606 1.2283193 0 1980 12431 0 .356707 .06134998 0 .03973299 0 21 13.688076 .016748827 .013355592 1.1703357 1 1980 12458 0 .24621876 .06450309 0 -.002574567 0 19 13.283525 .012811655 .03587444 1.2283193 1 1980 12459 0 .11824594 0 1 .004825927 0 28 10.823412 .005209485 .04545455 1.2662623 0 1980 12490 0 .3562971 .04096076 0 .010771302 0 35 17.41049 .018079361 .014732965 .9750789 1 1980 12503 0 .12865199 .034378815 0 -.024339056 0 21 13.611733 .01915895 .03902439 1.1703357 1 1980 12511 0 .25340647 .10912268 0 .0547875 0 14 14.38579 .01820992 .015267176 1.0285842 1 1980 12570 0 .3097533 .04685846 0 .022912564 0 36 11.76219 .015693892 .033333335 1.253005 1 1980 12626 0 .3538216 .05292915 0 .030371826 0 42 12.870483 .016360428 .02919708 .91574 1 1980 12650 0 .06134988 .17173077 0 .05579203 0 40 8.900996 .02359761 .02056555 1.3212353 0 1980 12678 0 0 .4309552 1 .0030377905 0 17 6.132584 .02839451 .5714286 1.1980772 0 1980 12706 0 .11446616 .016173422 0 -.0019752902 0 19 13.702887 .02906193 .037209302 1.2283193 1 1980 12749 0 .4085252 .05668703 0 -.016803246 0 42 14.602016 .01987743 .05594406 .91574 1 1980 12781 0 .05295966 0 0 .029104417 0 31 11.54322 .017218512 .04232804 .6062865 0 1980 12888 0 .15439856 .08318196 0 .018656494 0 17 12.758694 .017809704 .031128405 1.1980772 1 1980 12918 0 .02397408 .0125054 1 .006797479 0 49 10.242435 .02050053 .08247422 1.238279 0 1980 12976 0 .3814954 .06640474 0 .02104654 0 42 13.42747 .015614232 .02352941 .91574 1 1980 13012 0 .007145396 .00934945 0 .013054528 0 10 9.905617 .031440463 .14035088 .9145566 0 1980 13040 0 .004122826 0 1 -.0016724152 0 9 9.461298 .01717139 .2191781 .8329948 0 1980 13047 0 .3609653 .05366412 0 .04056722 0 30 15.264 .02578407 .014134276 1.1877681 0 1980 13056 0 .29032695 .1001764 1 .003421556 0 8 11.859006 .0125617 .08648649 1.0014412 0 1980 13100 0 .28202957 .0743167 0 .015812986 0 42 13.439666 .016292864 .03773585 .91574 1 1980 13119 0 .21631366 .018596794 0 .005810721 0 9 12.755242 .017415883 .04123711 .8329948 1 1980 13143 0 .02271703 .0001588591 0 -.034423802 1 43 12.45789 .032823723 .125 1.2091174 0 end
I am running the following two regressions to define the effect of being a sin stock on the share of institutional ownership of each institution's group, and I now want to test if the coefficient in front of SINDUM is significantly different between the two regressions (-0.0211182 for group1 vs. -0.0110016 for group 2).
Code:
moulton IO_Group1 SINDUM GDUM ln_mktcap Ind_Beta PRINV std_ret avg_monthly_ NASDAQ SP500, cluster (Industry_Group_str) moulton moulton IO_Group2 SINDUM GDUM ln_mktcap Ind_Beta PRINV std_ret avg_monthly_ NASDAQ SP500, cluster (Industry_Group_str) moulton
What I need to perform is a t-test of the difference of coefficients in from of SINDUM. However, I am not sure how to properly do that and I did not find clarity reading related posts in the forum and additional material.
Any help on how to proceed will be extremely appreciated.
Thank you so much in advance!
Marco
Comment