Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to present results from ordinal regression. Best practise.

    Dear Statlist Community,

    I am nearing the end of a project and had been hopping of running to ordinal regression model within my study. I am unsure however, what is the recommended best practise for presenting these results. I was hoping to run two different types of ordinal regression, one with a Likert type scale dependent variable and the second with a dichotomous dependent variable. I am using panel data with a fixed effect model on both of these regression

    Can I simply utilise the odd's ratios? I had originally hoped to include predicated probabilities but I am (1) struggling to find the commands within stata to generate these and (2) I am worried that with my regression using the Likert scale I will have to generate a lot of information for readers to digest as the main relationship I am examining is age categories. Any help would be greatly appreciated. I provide data and the code used below

    1) For my Likert scale dependent variable regression I am utilising the user generate feologit command
    Code:
    feologit self_percp_nor i.age_cat
    2) For my second regression (looks at the relationship between self-perceived employability and actual job gain in time t+1) I use the following syntax:
    Code:
    xtlogit jobgain_tp1 i.self_percp_nor, fe or
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input double _nomem_encr int _Year float(jobgain_tp1 self_percp_nor age_cat ned_unemp_rate)
    800009 2018 0 . 4 3.8
    800009 2019 . . 4 3.4
    800073 2018 0 . 4 3.8
    800100 2017 0 4 1 4.9
    800125 2008 1 4 2 3.7
    800372 2016 1 4 1   6
    800387 2008 1 5 2 3.7
    800500 2017 0 . 4 4.9
    800540 2010 1 4 2   5
    800540 2014 1 2 3 7.4
    800671 2017 0 . 4 4.9
    800988 2017 1 . 2 4.9
    800994 2011 0 2 4   5
    800994 2012 0 2 4 5.8
    800994 2013 1 2 4 7.3
    801303 2008 0 2 2 3.7
    801303 2009 0 3 2 4.4
    801303 2010 0 7 2   5
    801361 2018 1 . 2 3.8
    801486 2015 0 4 2 6.9
    801486 2016 1 . 2   6
    801550 2017 0 4 2 4.9
    801599 2008 0 1 3 3.7
    801599 2010 0 2 3   5
    801635 2013 0 2 2 7.3
    801635 2014 0 1 2 7.4
    801776 2010 1 6 1   5
    801849 2018 0 1 4 3.8
    801849 2019 . 1 4 3.4
    801858 2016 0 2 3   6
    802032 2008 0 2 4 3.7
    802032 2009 0 1 4 4.4
    802032 2010 0 1 4   5
    802032 2011 . . 4   5
    802264 2015 1 6 1 6.9
    802297 2010 0 6 1   5
    802297 2015 0 4 1 6.9
    802297 2016 1 6 1   6
    802587 2017 0 . 4 4.9
    802587 2018 . . 4 3.8
    802597 2016 1 6 1   6
    802761 2012 0 5 1 5.8
    802761 2013 0 5 1 7.3
    802761 2014 0 4 1 7.4
    802761 2015 0 3 1 6.9
    802761 2016 1 4 1   6
    802981 2013 0 1 3 7.3
    802981 2014 0 1 3 7.4
    802981 2015 0 1 3 6.9
    802981 2016 0 1 3   6
    802981 2017 0 . 3 4.9
    803099 2019 . 5 1 3.4
    803201 2011 1 . 2   5
    803201 2015 0 . 3 6.9
    803295 2008 0 6 2 3.7
    803295 2009 0 4 2 4.4
    803356 2017 0 1 4 4.9
    803536 2015 0 4 1 6.9
    803567 2013 0 1 4 7.3
    803567 2014 0 1 4 7.4
    803567 2015 0 1 4 6.9
    803567 2016 0 1 4   6
    803567 2017 0 1 4 4.9
    803567 2018 . . 4 3.8
    803570 2014 0 5 1 7.4
    803570 2019 . 4 1 3.4
    803582 2014 0 2 2 7.4
    803582 2017 0 . 3 4.9
    803695 2017 0 . 2 4.9
    803717 2008 1 4 2 3.7
    803717 2011 0 3 2   5
    803717 2012 0 4 3 5.8
    803717 2013 0 2 3 7.3
    803717 2014 0 2 3 7.4
    803717 2015 0 2 3 6.9
    803717 2016 0 2 3   6
    803717 2017 0 1 4 4.9
    803717 2018 0 1 4 3.8
    803717 2019 . . 4 3.4
    803747 2010 1 3 2   5
    803747 2013 0 3 2 7.3
    803747 2014 0 . 2 7.4
    803747 2016 0 2 2   6
    803747 2017 0 2 2 4.9
    803775 2015 0 1 2 6.9
    803839 2009 0 5 2 4.4
    803839 2010 0 4 2   5
    803839 2011 1 4 2   5
    803854 2012 0 5 2 5.8
    803854 2013 1 3 2 7.3
    803854 2015 0 4 2 6.9
    803854 2016 0 4 2   6
    803854 2017 1 4 2 4.9
    803906 2016 0 2 2   6
    803906 2017 0 . 2 4.9
    803924 2016 1 6 1   6
    803952 2017 1 1 3 4.9
    804019 2016 1 5 2   6
    804031 2008 0 1 3 3.7
    804031 2010 0 1 3   5
    end
    label values self_percp_nor i257_7gl
    label def i257_7gl 1 "0%", modify
    label def i257_7gl 2 "Very Unlikely", modify
    label def i257_7gl 3 "Unlikely", modify
    label def i257_7gl 4 "Neutral", modify
    label def i257_7gl 5 "Likely", modify
    label def i257_7gl 6 "Very Likely", modify
    label def i257_7gl 7 "100%", modify
    label values age_cat agecat_2lb
    label def agecat_2lb 1 "26-39", modify
    label def agecat_2lb 2 "40-54", modify
    label def agecat_2lb 3 "55-59", modify
    label def agecat_2lb 4 "60-66", modify
    Last edited by Hugo Cooke; 07 Jan 2022, 03:27.
Working...
X