I have panel data, at first I run linear regression model (as below), do some tests and notice my model has omitted variables, heteroskedasticity, and autocorrelation problem. If I choose another model like FEM/REM/Robust FEM, will these problem be solved? Or can you please suggest me how to deal with these problem?
Thank you!
Thank you!
Code:
. xtset code year panel variable: code (strongly balanced) time variable: year, 2010 to 2019 delta: 1 unit . . regress wins_ROA wins_ATO winsor_SIZE TANG LEV Source SS df MS Number of obs = 5,010 F(4, 5005) = 646.79 Model 5.59435539 4 1.39858885 Prob > F = 0.0000 Residual 10.8225265 5,005 .002162343 R-squared = 0.3408 Adj R-squared = 0.3402 Total 16.4168819 5,009 .003277477 Root MSE = .0465 wins_ROA Coef. Std. Err. t P>t [95% Conf. Interval] wins_ATO .0188105 .0008743 21.52 0.000 .0170965 .0205244 winsor_SIZE .0072232 .0004905 14.73 0.000 .0062616 .0081849 TANG -.0181619 .0030956 -5.87 0.000 -.0242307 -.012093 LEV -.1497816 .0031995 -46.81 0.000 -.1560541 -.1435092 _cons -.0718411 .0127784 -5.62 0.000 -.0968924 -.0467898 . estat ovtest Ramsey RESET test using powers of the fitted values of wins_ROA Ho: model has no omitted variables F(3, 5002) = 9.20 Prob > F = 0.0000 . estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of wins_ROA chi2(1) = 840.19 Prob > chi2 = 0.0000
Comment