Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • joint significance of the dummy variables

    Hi, How do I test for the joint significance of the dummy variables using Stata commands?


    Denis

  • #2
    Perhaps with the test command, or in this case with the slightly easier to type testparm command.
    Code:
    . sysuse auto, clear
    (1978 automobile data)
    
    . regress price mpg i.rep78
    
          Source |       SS           df       MS      Number of obs   =        69
    -------------+----------------------------------   F(5, 63)        =      4.39
           Model |   149020603         5  29804120.7   Prob > F        =    0.0017
        Residual |   427776355        63  6790100.88   R-squared       =    0.2584
    -------------+----------------------------------   Adj R-squared   =    0.1995
           Total |   576796959        68  8482308.22   Root MSE        =    2605.8
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             mpg |  -280.2615   61.57666    -4.55   0.000    -403.3126   -157.2103
                 |
           rep78 |
              2  |   877.6347   2063.285     0.43   0.672     -3245.51     5000.78
              3  |   1425.657   1905.438     0.75   0.457    -2382.057    5233.371
              4  |   1693.841   1942.669     0.87   0.387    -2188.274    5575.956
              5  |   3131.982   2041.049     1.53   0.130    -946.7282    7210.693
                 |
           _cons |   10449.99   2251.041     4.64   0.000     5951.646    14948.34
    ------------------------------------------------------------------------------
    
    . testparm i.rep78
    
     ( 1)  2.rep78 = 0
     ( 2)  3.rep78 = 0
     ( 3)  4.rep78 = 0
     ( 4)  5.rep78 = 0
    
           F(  4,    63) =    1.07
                Prob > F =    0.3780
    
    .
    Or if you prefer a likelihood ratio test
    Code:
    . sysuse auto, clear
    (1978 automobile data)
    
    . regress price mpg i.rep78
    
          Source |       SS           df       MS      Number of obs   =        69
    -------------+----------------------------------   F(5, 63)        =      4.39
           Model |   149020603         5  29804120.7   Prob > F        =    0.0017
        Residual |   427776355        63  6790100.88   R-squared       =    0.2584
    -------------+----------------------------------   Adj R-squared   =    0.1995
           Total |   576796959        68  8482308.22   Root MSE        =    2605.8
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             mpg |  -280.2615   61.57666    -4.55   0.000    -403.3126   -157.2103
                 |
           rep78 |
              2  |   877.6347   2063.285     0.43   0.672     -3245.51     5000.78
              3  |   1425.657   1905.438     0.75   0.457    -2382.057    5233.371
              4  |   1693.841   1942.669     0.87   0.387    -2188.274    5575.956
              5  |   3131.982   2041.049     1.53   0.130    -946.7282    7210.693
                 |
           _cons |   10449.99   2251.041     4.64   0.000     5951.646    14948.34
    ------------------------------------------------------------------------------
    
    . estimates store full
    
    . regress price mpg if e(sample)
    
          Source |       SS           df       MS      Number of obs   =        69
    -------------+----------------------------------   F(1, 67)        =     17.58
           Model |   119910002         1   119910002   Prob > F        =    0.0001
        Residual |   456886957        67  6819208.31   R-squared       =    0.2079
    -------------+----------------------------------   Adj R-squared   =    0.1961
           Total |   576796959        68  8482308.22   Root MSE        =    2611.4
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             mpg |  -226.3607   53.98091    -4.19   0.000     -334.107   -118.6143
           _cons |   10965.23   1191.468     9.20   0.000      8587.05    13343.41
    ------------------------------------------------------------------------------
    
    . estimates store part
    
    . lrtest full part
    
    Likelihood-ratio test
    Assumption: part nested within full
    
     LR chi2(4) =   4.54
    Prob > chi2 = 0.3375
    
    .
    Last edited by William Lisowski; 31 Dec 2021, 14:57.

    Comment


    • #3
      Thanks for the reply, just asking if, for example, I would test for the joint significance of the qual1 dummy variables and for the joint significance of the region dummy variables. How would I lay out the commands in Stata?

      Comment


      • #4
        It might help if you wrote out the estimation command you have in mind. But based on what you say,

        reg y i.qual i.region
        testparm i.qual
        testparm i.region
        testparm i.qual i.region
        -------------------------------------------
        Richard Williams, Notre Dame Dept of Sociology
        StataNow Version: 18.5 MP (2 processor)

        EMAIL: [email protected]
        WWW: https://www3.nd.edu/~rwilliam

        Comment

        Working...
        X