Dear,
When using the following data
And running the following commands:
-reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, cluster(gvkey)
-reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year i.SIC, cluster(gvkey)
-xtreg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, fe vce(cluster gvkey)
With the last command, that includes firm fixed effects, the variable for the age of the firm (newfirmage) is dropped because of collinearity. What could be an explanation for this? Previously, when running a firm fixed effects regression using the firm age variable, this problem did not occur.
When using the following data
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double ESGscore float(ESGcompensation tenure) double femaledummy float(independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage) double year . . . 0 .8181818 11 43 1 7.37419 .05524752 .12475272 .10165016 2014 . . . 0 .8181818 11 44 1 7.416138 .094931 -.016281042 .10269745 2015 24.84 0 . .08333333333333333 .8333333 12 45 1 7.477378 .09853068 .1741487 .10458081 2016 23.81 0 . .08333333333333333 .8333333 12 46 1 7.466399 .08296714 .3389418 .11621959 2017 22.62 0 0 .08333333333333333 .8333333 12 47 1 7.626473 .10117321 .08878828 .09339573 2018 70.36 0 2 .09090909090909091 .9090909 11 77 0 10.621083 .18364143 .3576642 .4246824 2015 70.27 0 3 .15384615384615385 .9230769 13 78 0 10.601125 .1527675 .3279516 .4747825 2016 72.02 0 4 .15384615384615385 .9230769 13 79 0 10.65034 .13248113 .3400276 .4876839 2017 69.36 0 5 .16666666666666666 .9166667 12 80 0 10.704165 .0925388 .2206872 .56172 2018 71.34000000000002 0 6 .2 0 10 81 0 10.73134 .10040837 .1878603 .5574465 2019 63.25 1 . .2 .9 10 58 0 8.213719 .07676775 .21915583 .29520902 2018 62.58 1 0 .18181818181818182 0 11 59 0 8.152258 .068340935 .225777 .3145051 2019 77.27 0 . .36363636363636365 .8181818 11 81 1 10.217934 .09202623 .6417528 .3662164 2017 72.39 0 . .3333333333333333 .8333333 12 82 1 10.328036 .112575 .8903543 .29127774 2018 65.69000000000001 0 . .1 .8 10 41 1 8.59822 .056 .2571971 .5105 2012 65.79999999999998 0 . .1 .7 10 42 1 8.5752735 .05579894 .4196974 .47452155 2013 63.76999999999999 0 0 .09090909090909091 .7272727 11 43 1 8.613594 .073798776 .4057164 .5872047 2014 80.48 0 1 .2 .6 10 44 1 8.291797 .04321077 .6225287 .7275651 2015 71.73 0 2 .2222222222222222 .6666667 9 45 1 8.359838 .04321077 1.4030088 .4320988 2016 69.35000000000001 0 3 .25 .75 8 46 1 8.580919 .06468926 1.2907536 .3940678 2017 68.12 0 4 .2222222222222222 .7777778 9 47 1 8.775703 .12949955 1.5674034 .2743635 2018 78.76 1 0 .16666666666666666 .9166667 12 54 0 9.2533045 .14402303 .765121 .34414 2014 79.16999999999999 1 1 .2 .9 10 55 0 9.199775 .16095217 .7700632 .33713534 2015 73.57 1 2 .25 .875 8 56 0 9.1616125 .16982825 .8828155 .3447852 2016 79.04 1 3 .25 .875 8 57 0 9.010376 .13681555 .8072674 .21458586 2017 84.77999999999999 1 4 .25 .875 8 58 0 9.097194 .14923117 .8526819 .1987976 2018 . . . .2222222222222222 .8888889 9 49 1 8.251221 .14258662 .17025746 .3058247 2010 . . . .3 .8 10 50 1 8.3705015 .14142445 .252262 .25156882 2011 . . 0 .3 .8 10 51 1 8.446127 .14459582 .25676554 .18746594 2012 . . 1 .2727272727272727 .8181818 11 52 1 8.509967 .15690304 .41635615 .14919493 2013 . . 2 .4 .9 10 53 1 8.588211 .1983498 .6560078 .12991425 2014 55.67999999999999 0 3 .45454545454545453 .9090909 11 54 1 8.630165 .2525639 .7763644 .10500536 2015 64.86 0 4 .45454545454545453 .9090909 11 55 1 8.687948 .18359767 .5901425 .29753062 2016 60.86999999999999 0 5 .4444444444444444 .8888889 9 56 1 8.978786 .16294228 .4026812 .23919925 2017 54.26 0 6 .45454545454545453 .9090909 11 57 1 9.019664 .10749634 .2950791 .1927236 2018 . . . .1111111111111111 .7777778 9 40 1 7.451241 .08765724 .2051185 .2197327 2011 . . 0 .1 .8 10 41 1 7.352441 .14945073 .5058599 .27173635 2012 . . 1 .14285714285714285 .8571429 7 42 1 7.400743 .13658576 .4850742 .2291917 2013 . . 2 .14285714285714285 .8571429 7 43 1 7.446702 .14374375 .5901712 .26651448 2014 34.88999999999999 0 3 .14285714285714285 .8571429 7 44 1 7.54163 .17541023 .6101473 .25745597 2015 39.5 0 4 .14285714285714285 .8571429 7 45 1 7.571268 .11684445 .4182765 .3666088 2016 37.67000000000001 0 5 .14285714285714285 .7142857 7 46 1 7.624082 .09757508 .23310487 .3813571 2017 39.300000000000004 0 6 .14285714285714285 .8571429 7 47 1 7.706523 .08998518 .2245757 .35237 2018 50.32 0 7 .2857142857142857 0 7 48 1 7.697621 .07229212 .28666762 .4298165 2019 66.64999999999999 1 . .25 .9166667 12 92 0 10.57903 .15441585 .8198145 .29134193 2016 67 1 0 .23076923076923078 .8461539 13 93 0 10.609897 .1555391 .9738825 .3011097 2017 72.66999999999999 1 1 .25 .9166667 12 94 0 10.6407 .15354924 .8560433 .28065014 2018 74.06999999999998 1 2 .25 0 12 95 0 10.510777 .14460029 1.0402052 .28471854 2019 52.63999999999999 0 . 0 .7777778 9 43 1 6.97714 .16074465 .9323655 .04778805 2010 46.99 0 . 0 .7777778 9 44 1 7.257653 .2039374 .6521157 .013800863 2011 48.730000000000004 0 . 0 .7777778 9 45 1 7.357927 .1783866 .80136 0 2012 47.07 0 . 0 .75 8 46 1 7.491087 .19587673 .7419222 0 2013 43.57 0 . .125 .875 8 47 1 7.736962 .2333378 1.345916 0 2014 47.31 0 . .125 .875 8 48 1 8.088991 .29167736 1.4949583 0 2015 41.54 0 0 .125 .875 8 49 1 8.098339 .29167736 1.3172176 0 2016 55.72000000000001 0 1 .1111111111111111 .7777778 9 50 1 8.202866 .29167736 1.4328263 0 2017 55.49 0 2 .1111111111111111 .7777778 9 51 1 8.260493 .29167736 1.248179 0 2018 55.11000000000001 0 3 .2222222222222222 0 9 52 1 8.124683 .29167736 1.0762497 0 2019 68.46000000000001 1 15 .07692307692307693 .7692308 13 49 1 10.43005 .17052774 .23008296 .1577297 2010 73.16999999999999 1 16 .15384615384615385 .7692308 13 50 1 10.55753 .1661897 .020101056 .154768 2011 69.93000000000004 1 17 .15384615384615385 .7692308 13 51 1 10.537177 .16677792 -.07162579 .186713 2012 69.98 1 18 .10526315789473684 .9473684 19 52 1 10.011624 .1438228 .05197859 .13561304 2013 74.15999999999998 1 19 .14285714285714285 .9285714 14 53 1 9.281451 .1422054 -.029052453 .15519208 2014 76.76 1 20 .14285714285714285 .9285714 14 54 1 8.800264 .05588536 -.17600115 .193888 2015 70.58000000000001 1 21 .18181818181818182 .9090909 11 55 1 8.468423 .04321077 .1664449 .23779742 2016 77.38 1 22 .16666666666666666 .9166667 12 56 1 8.606302 .04321077 .1561371 .3018778 2017 76.59000000000002 1 23 .16666666666666666 .9166667 12 57 1 8.751949 .11864881 .09665885 .3112957 2018 78.64 1 24 .18181818181818182 0 11 58 1 8.778788 .12744468 .4281915 .3641539 2019 44.99 0 0 .3333333333333333 .7777778 9 47 1 8.496541 .07093683 .2410163 .07349521 2015 52.77999999999999 1 1 .4 .9 10 48 1 8.545722 .07710854 .4223332 .11761354 2016 64.86 1 2 .3 .9 10 49 1 8.604032 .04490374 .3076631 .309028 2017 62.92 1 3 .3 .9 10 50 1 8.770625 .0836113 .14714135 .25885597 2018 38.56 1 6 .125 0 8 36 0 6.530162 .06068184 .3098805 .3795676 2019 63.149999999999984 1 5 .25 .9166667 12 68 0 9.703822 .08566877 .19364943 .3509643 2016 61.03999999999999 1 6 .25 .9166667 12 69 0 9.643739 .08386336 .2442706 .3570218 2017 61.72000000000002 1 7 .25 .9166667 12 70 0 9.692501 .07303918 .23051265 .3712887 2018 . . 16 0 .5555556 9 24 1 5.436426 .11913456 .2167348 .22050823 2010 . . 17 .1111111111111111 .7777778 9 25 1 5.718438 .14718068 .427489 .19572096 2011 . . 18 .125 .875 8 26 1 5.903152 .18160243 .9738351 .13114357 2012 . . 19 .125 .875 8 27 1 5.942854 .1570837 .6841882 .11564601 2013 . . 20 .1111111111111111 .8888889 9 28 1 5.699219 .0466808 .1498511 .21033834 2014 . . 21 .125 .75 8 29 1 5.667747 .0631241 .27523154 .15416007 2015 19.42 0 22 .125 .875 8 30 1 5.743365 .08574598 .501839 .09524463 2016 19.710000000000004 0 23 .125 .875 8 31 1 5.87225 .08169091 .42095006 .14467356 2017 21.23 0 24 .125 .875 8 32 1 6.118696 .08737051 .18997724 .16285902 2018 19.180000000000003 0 . .125 .875 8 14 1 7.812359 .14534338 .7824795 .3059801 2010 12.28 0 . .14285714285714285 .8571429 7 15 0 8.003 .16774504 .7361237 .29260954 2011 25.729999999999997 0 . .14285714285714285 .8571429 7 16 0 8.111992 .1640335 .821292 .28010777 2012 29.59 0 . .25 .875 8 17 0 8.187058 .1588553 .9790312 .2407432 2013 32.43 0 . .25 .875 8 18 0 8.299525 .16152874 .9056726 .2669422 2014 33.37 0 . .3333333333333333 .8888889 9 19 0 8.287602 .16411975 .8777345 .2914114 2015 30.75 0 0 .375 .875 8 20 0 8.25325 .14184132 .7473257 .3297666 2016 24.979999999999997 0 1 .3 .8 10 21 0 8.36641 .14399664 .9679301 .27889574 2017 42.07 0 2 .375 .875 8 22 0 8.485883 .14719321 .8264899 .3039281 2018 46.90999999999998 0 . .15384615384615385 .9230769 13 28 1 9.619332 .15195695 .48613095 .3072713 2010 47.48000000000001 0 . .16666666666666666 .9166667 12 29 1 9.653872 .13017945 .5043692 .4384604 2011 50.02999999999999 0 0 .14285714285714285 .8571429 14 30 1 9.756436 .12983903 .6149842 .4885815 2012 67.06999999999996 0 1 .15384615384615385 .9230769 13 31 1 9.834994 .11457089 .6768623 .4858677 2013 64.41999999999999 0 2 .16666666666666666 .9166667 12 32 1 9.906632 .12978017 .8677925 .4450869 2014 68.27 0 3 .15384615384615385 .9230769 13 33 1 9.983315 .14964513 .840564 .440874 2015 end format %ty year
And running the following commands:
-reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, cluster(gvkey)
-reg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year i.SIC, cluster(gvkey)
-xtreg ESGscore c.ESGcompensation##c.tenure femaledummy independent boardsize newfirmage Democratic logsales roa_w logtobin_w leverage i.year, fe vce(cluster gvkey)
With the last command, that includes firm fixed effects, the variable for the age of the firm (newfirmage) is dropped because of collinearity. What could be an explanation for this? Previously, when running a firm fixed effects regression using the firm age variable, this problem did not occur.
Comment